

 ISSN 2321-2152

 www.ijmece.com

 Vol 11, Issue 2, 2023

82

Implementation of Digital Signal Processing in the

RadioSolariz Project Using SSE2

Mr.Thanniru Pavan Vinayak

 Assistant Professor, Department of ECE,

Malla Reddy College of Engineering for Women.,

Maisammaguda., Medchal., TS, India

Abstract

The purpose of this article is to provide a more

detailed account of the digital signal processing

methods that were used to manipulate data in the

radioSolariz solar radio-telescope project. The

usage of streaming single instruction—multiple

data extensions 2 is important to the implementation

of several algorithms in digital signal processing.

This supplementary set of instructions for general-

purpose personal computer microprocessors allows

for parallel processing, which in turn increases

computing capacity. As a result, the digital signal

processing computer's power consumption drops

and its data throughput increases. Along with the

original code snippets, we provide optimized code

fragments and analyze and debate them. Additional

contemporary parallel processing methods are

planned for future investigation and deployment.

Introduction

The idea for radio Solariz came up in 2019 [1], and

by 2020 the first prototype had been built, with the

intention of beginning radio data collection in late

2020. Solar radio waves generated by the Sun in the

meter and decameter bands may be detected using the

radioSolariz telescope. Figure 1 shows the overall

block diagram of the telescope station. Antennas, a

radio receiver, and a PC are the components of the

station. After receiving a signal from the antennas,

the radio receiver converts it to digital format and

sends it to the computer. Digital signal processing

(DSP) methods are used to process the signal data

there utilizing radio Solariz software [2-5]. The

central processing unit (CPU) of the computer in

question is a general-purpose processor that, when

given standard instructions, can carry out any digital

processing job. The first software prototype used this

method. Streaming single instruction multiple data

extensions 2 (SSE2) was later developed and

implemented as a new method to enhance the

system's performance [6-7].

General block schematic of the Radio Solariz station

(Fig. 1).

Processing digital signals using a single streaming

command and several data extensions 2

Give me the rundown on SSE2. The central

processing unit (CPU) of personal computers in the

IBM-PC line uses this instruction set, which is an

expansion to the regular Intel architecture IA-32 set

of instructions. Following the moniker "single

instruction, multiple data," this collection of

instructions is designed for SIMD-based parallel data

processing. So, instead of decoding numerous

instructions, a single instruction may be performed

on an array of comparable data, conserving power

and transistors in the CPU. An additional perk is that

the instruction set manages a main processor's

parallel processing co-processor, which allows for the

execution of many operations simultaneously. Intel

first released SSE2 in 2000 with the original Pentium

4 CPU. Although Intel has released several

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 11, Issue 2, 2023

83

instruction sets for parallel computing, this one is not

their first. A vast advance over its predecessor, the

SSE instruction set, it supersedes Intel's branded but

meaningless MMX instruction set. Intel released

SSE3, an expansion of SSE2, later in 2004;

nevertheless, it was never as popular as SSE2.

Another version is available for SSE4. Adding 144

more instructions to the original 70 in the SSE

paradigm, SSE2 expands upon it. The rival chip

maker, Advanced Micro Devices (AMD), included

SSE2 in their CPUs. This occurred in 2003, when

AMD64 64-bit CPUs like Opteron and Athlon 64

were debuted.

Data compression, preconditioning, spectrum

decomposition, filtering, signal power level

extraction, and radio Solariz digital signal processing

are all part of the process. These computations are

ideal for parallelization since they all use the same

methods to analyze huge volumes of data. However,

the first version of the program used the x87 floating

point unit (FPU), which is a programmable scalar

and, depending on the architecture and organization

of the underlying processor, may be implicitly

parallelized to some degree by the central processing

unit (CPU).

Figure 2: Streaming single instruction structure with

numerous data extensions Intermediate results are

calculated with 80 bits of accuracy using 2 operations

on floating point 32-bit data using FPU (x87)

instructions. Only numerically unstable techniques,

which were not implemented in radioSolariz, need

such a level of accuracy.

With four SSE2 arithmetic and logical units (ALUs)

per processor core, SSE2 floating point instructions

can execute two operations in parallel on 64-bit

floating point data or four operations on 32-bit data

simultaneously (see Fig. 2). Digital signal processing

for radioSolariz only need 32-bit floating point data.

In theory, this allows for a fourfold improvement in

data throughput. The speed boost is lesser, but still

considerable, since the CPU realizes implicit

parallelism on normal x87 instructions. This is why,

while doing computations on massive datasets, the

second version of the program makes heavy use of

SSE2 instructions. Figure 3 displays a combination

of x87 and SSE2 instructions for a summing function

that determines the total of an array's elements. In

Figure 3, the top part shows the regular x87 code, and

in the bottom part, the SSE2 code is shown. You may

see examples of the two instruction sets implemented

in C++ in these two pieces of code. You can see that

both programs are concise, easy to understand, and

comment-free. To implement SSE2 instructions in

C++, no bloated code structures are required. Thanks

to these advantages, the author was able to port the

majority of the computationally complex code to

SSE2 while maintaining readability,

understandability, and debugging ease.

Figure 3: C++ code for an array sum computation

utilizing the x87 and SSE2 instruction sets.

The function that determines the signal power's base-

10 logarithm is another instance of an optimization

that makes advantage of SSE2 instructions. If you

look closely at Fig. 4, you can see bits of both the

original and optimized code. The shorter original

code is shown here. To hold the intermediate

findings, additional local temporary variables are

needed for more complicated computations. While it

is possible to prevent this, doing so would result in

code expressions that are so difficult to comprehend

that code maintenance would suffer. There is a

potential upper bound of four times performance gain

in both cases. Real performance increase close to this

estimate—3.5 times—was shown in the tests. This

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 11, Issue 2, 2023

84

number changes depending on the tested processors,

since various families of CPUs achieve super scalar

parallelism to varied degrees.

There were substantial speed gains across the board

for the radioSolariz software's many other

functionalities that deal with massive data arrays.

Due to the presence of SSE2 ALUs in every CPU

core, it was feasible to achieve a second level of

parallelization by executing an equal number of

program threads for each core. An 8-core CPU ran

our last testing. Here, a potential performance boost

of up to 32 times is possible.

Code in C++ for calculating the base 10 logarithm of

the signal power using the x87 and SSE2 instruction

sets, as shown in Figure 4.

Conclusions

Using SSE2 instructions instead of the normal x87

instructions in the program resulted in a speed boost

of many times. In further updates to the radioSolariz

telescope, the author is urged to further enhance the

software by including new, current parallel

processing hardware and software approaches, such

as the installation of field programmable gate arrays

(FPGAs) [8].

References

1. Zabunov, S., R. Miteva. Online Real-time

Visualization of radioSolariz Spectrum and

Spectrogram, Proceedings of the SES-2020

conference, ISSN 2603-3313, 2020, pp. 69–74.

2. Fog, A. Optimizing software in C++: An

optimization guide for Windows, Linux and Mac

platforms. Technical University of Denmark, 2021,

Copyright © 2004–2021.

3. Canu, S., R. Flamary, D. Mary. Introduction to

optimization with applications in astronomy and

astrophysics. HAL archives-ouvertes, hal-01346134,

2016, pp. 1–36.

4. Patterson, D., J. Hennessey. Computer

Organization and Design: The Hardware/Software

Interface. Morgan Kaufmann, 2nd edition, 1997, 916

p.

5. Knuth, D. E. The Art of Computer Programming,

v. 2, Semi-numerical Algorithms. Addison-Wesley,

2nd edition, 1998, 784 p.

6. Tian, X., H. Saito, S. V. Preis, et al. Effective SIMD

Vectorization for Intel Xeon Phi Coprocessors.

Scientific Programming, vol. 2015, Article ID

269764, 14, 2015, pp. 1–14,

https://doi.org/10.1155/2015/269764

7. Nyland, L., M. Snyder. Fast trigonometric

functions using Intel’s SSE2 instructions. Intel tech.

rep., 2004, pp. 1–11.

8. Andraka, R. A survey of CORDIC algorithms for

FPGAs. FPGA’98, the proceedings of the

ACM/SIGDA sixth international symposium on Field

Programmable Gate Arrays, 1998, pp. 191–200.

http://www.ijmece.com/

