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Abstract 

Deep Convolutional Neural Networks (DCNNs) have demonstrated strong performance in image 

recognition due to their robust feature extraction capabilities. However, in vein recognition tasks—where 

training datasets are often limited in size—DCNNs tend to underperform due to over-reliance on large-

scale data. To address this challenge, we propose a novel Multi-Scale Deep Representation Aggregation 

(MSDRA) framework built upon a pre-trained DCNN. The method begins by extracting multi-scale feature 

maps from the pre-trained model. These feature maps are refined using a local mean thresholding approach 

to suppress noise and highlight relevant features. Subsequently, an Unsupervised Vein Information Mining 

(UVIM) technique is introduced to generate a binary mask that localizes vein structures within the feature 

maps. This mask is then employed to filter out background data while retaining discriminative vein 

information. The enhanced multi-scale features are aggregated and concatenated into compact feature 

vectors, which are finally classified using a Support Vector Machine (SVM). Experiments conducted on 

two benchmark vein datasets confirm the superior accuracy of the proposed method over existing 

approaches. Additionally, validation on the PolyU Palmprint dataset underscores the model’s robustness 

and generalization capacity. 

Keywords: Pre-trained DCNN, vein recognition, MSDRA, local mean threshold, UVIM, SVM. 

I. INTRODUCTION 

With the increasing emphasis on secure and 

reliable authentication systems, hand-dorsa vein 

recognition has emerged as a promising 

biometric identification technique in recent years.  

Compared to traditional biometric modalities 

such as face, palmprint, fingerprint, and iris 

recognition, hand-dorsa vein recognition offers 

three distinct advantages: enhanced security,  

 

inherent liveness detection, and user 

convenience. These characteristics position it as 

a highly effective and robust biometric solution, 

especially for applications demanding high levels 

of authentication assurance.A typical hand-dorsa 

vein recognition system comprises four key 

stages: vein image acquisition, image 

preprocessing, feature extraction, and feature 
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matching. Among these, feature extraction plays 

a critical role in determining the system's 

accuracy and robustness. Existing approaches to 

feature extraction for hand-dorsa vein recognition 

can be broadly categorized into three groups: 

shape-based, texture-based, and deep learning-

based methods. 

Shape-based methods primarily rely on 

extracting geometrical or structural vein 

information through vein segmentation or 

mathematical modeling. While such methods are 

intuitive, they often suffer from inaccuracies due 

to poor segmentation or low image contrast, 

which can significantly impact recognition 

performance. In contrast, texture-based 

methods such as Scale-Invariant Feature 

Transform (SIFT) and Local Binary Patterns 

(LBP) aim to encode the local textural variations 

within vein images. However, these approaches 

face challenges in handling sparse vascular 

structures and are sensitive to image 

preprocessing techniques like contrast 

enhancement, which can result in keypoint 

mismatches and unreliable identification 

outcomes. 

The recent success of Deep Convolutional 

Neural Networks (DCNNs) in various computer 

vision tasks has inspired their application in vein 

recognition. DCNNs are capable of learning 

hierarchical and discriminative features directly 

from data, making them particularly well-suited 

for complex pattern recognition tasks. In vein 

images, they can capture anatomical properties 

such as the number, location, angle, and curvature 

of vein branches. These structural patterns are 

critical for uniquely identifying individuals. 

Despite their potential, DCNN-based methods are 

often constrained by the limited size of available 

vein datasets, which can affect their 

generalization capability. Additionally, some 

prior work, such as anatomical analysis-based 

vein recognition, has utilized structural 

characteristics like continuity, solidity, and 

directionality to refine the vein patterns. 

However, these characteristics were used 

primarily for correcting segmentation defects 

rather than being directly employed as 

discriminative features. 

To address these limitations, the present work 

proposes a multi-scale deep representation 

aggregation framework that integrates 

anatomical insights with deep feature extraction. 

The aim is to enhance the model's ability to 

extract robust and discriminative vein features 

while mitigating the effects of small dataset sizes 

and preprocessing artifacts. The effectiveness of 

the proposed method is substantiated through 

comprehensive experiments, as detailed in the 

subsequent sections. 

II LITERATURE SURVEY 

Liu et al. proposed MMRAN, a deep learning 

model that incorporates a residual attention 

mechanism to enhance vein recognition 

performance. The model exhibits strong results 

during training. However, as noted by Krishnan 
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and Thomas, MMRAN's effectiveness decreases 

when tested on images involving rotation or 

scaling transformations that were not present in 

the training data, indicating limitations in 

generalization. 

Shaheed et al. introduced DS-CNN, a vein 

recognition model based on the Xception 

architecture and utilizing depth-wise separable 

convolutions. This model demonstrates high 

accuracy when applied to large and well-

annotated datasets. Nonetheless, Krishnan and 

Thomas highlight its vulnerability to variations 

in image quality and pose, especially when test 

samples deviate from the training distribution. 

Zhang and Wang presented a vein recognition 

approach based on partitioned Local Binary 

Patterns (LBP). By dividing vein images into 

multiple regions and extracting features locally, 

the method aims to improve discriminative 

power. Despite this, Krishnan and Thomas 

assert that the model remains sensitive to spatial 

transformations such as translation and rotation, 

thus limiting its robustness in real-world 

scenarios. 

Das et al. proposed CNN-FVR, a convolutional 

neural network designed specifically for finger 

vein recognition. The network is trained on raw 

finger vein images without extensive 

preprocessing. According to Krishnan and 

Thomas, this model risks learning features from 

non-venous image regions, potentially increasing 

false positive rates. Additionally, image resizing, 

often required for uniform input dimensions, can 

impair recognition accuracy. 

Qin and El-Yacoubi developed Deep-FV, a deep 

learning model leveraging feature extraction and 

reconstruction techniques for finger vein 

verification. While effective in theory, Krishnan 

and Thomas emphasize that Deep-FV demands 

extensive training data to perform well, a 

common limitation in biometric systems where 

annotated vein datasets are scarce. 

Yang et al. implemented an anatomy-based 

analysis strategy to enhance the clarity and 

accuracy of extracted vein patterns. Their method 

uses anatomical features—such as vein 

continuity, solidness, and directionality—to 

correct structural artifacts like burrs and gaps. 

However, Krishnan and Thomas criticize this 

approach for not integrating these anatomical 

traits directly into the vein recognition process as 

input features, which could have improved 

recognition accuracy. 

III EXISTING SYSTEM 

Current finger vein recognition techniques can 

broadly be categorized into shape-based, 

texture-based, and deep learning-based 

approaches. Each of these has distinct 

mechanisms and limitations that impact their 

effectiveness under varying conditions. 

Shape-based methods rely heavily on the 

precise segmentation of vein patterns from the 

background. While they can provide accurate 
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recognition under ideal imaging conditions, their 

performance significantly deteriorates when 

dealing with low-quality or poorly segmented 

images. Inconsistent lighting, noise, and finger 

placement variations further complicate the 

segmentation process, making these methods less 

reliable in practical deployments. 

Texture-based methods, such as those using 

Scale-Invariant Feature Transform (SIFT) and 

Local Binary Patterns (LBP), attempt to 

characterize vein patterns by capturing local 

textural variations. These descriptors offer some 

robustness to minor changes in lighting or 

orientation. However, finger vein images 

typically possess sparse and low-contrast 

structures, which limits the ability of texture-

based methods to extract stable and distinctive 

features. Additionally, these methods are highly 

sensitive to preprocessing steps like filtering, 

enhancement, and normalization. Any 

inconsistencies in these stages can lead to 

significant variability in the extracted features, 

thereby degrading overall system performance 

and reliability. 

IV PROBLEM STATEMENT 

Traditional finger vein recognition systems 

continue to face significant challenges that hinder 

their effectiveness in real-world applications. 

Shape-based and texture-based methods often 

suffer from poor feature extraction capabilities, 

relying on handcrafted features that are highly 

sensitive to noise, skin condition, image quality, 

and illumination. These methods struggle 

particularly in low-contrast and noisy 

environments, which are common in real-life 

biometric scenarios. While deep learning-based 

models such as Deep Convolutional Neural 

Networks (DCNNs) offer improved feature 

extraction through automated learning, they 

require large-scale, high-quality labeled 

datasets for training. Unfortunately, such 

datasets are scarce in the vein recognition 

domain, which significantly limits their practical 

deployment.To address these limitations, the 

Multi-Scale Deep Representation Aggregation 

(MSDRA) model has been proposed. This model 

leverages a pre-trained DCNN to extract multi-

scale feature maps, thereby capturing rich and 

hierarchical vein features. Additionally, it 

integrates a Local Mean Thresholding method 

to effectively suppress background noise, 

which enhances the clarity and usability of the 

extracted vein patterns.The goal of MSDRA is to 

improve the accuracy, robustness, and 

generalization of vein recognition systems, 

especially under challenging conditions. By 

focusing on multi-scale representation and 

noise elimination, MSDRA represents a 

significant advancement in biometric 

identification. It directly addresses the unique 

challenges of finger vein recognition—such as 

low image contrast, uneven illumination, and 

limited data availability—making it a more 

practical and secure solution for real-world 

biometric security applications. 
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V PROPOSED SYSTEM 

The proposed system introduces the Multi-Scale 

Deep Representation Aggregation (MSDRA) 

model, designed to overcome the limitations of 

traditional finger vein recognition methods by 

improving feature extraction, noise suppression, 

and generalization. The system is built with a 

strong emphasis on accuracy, robustness across 

datasets, and computational efficiency, making 

it highly suitable for deployment in real-world 

biometric security applications. 

The MSDRA model begins by extracting multi-

scale feature maps from input images using a 

pre-trained Deep Convolutional Neural 

Network (DCNN). This enables the system to 

capture both coarse-level vein structures and 

fine-grained details, which are essential for 

accurate finger vein identification. By 

incorporating multiple scales, the model ensures 

that even subtle vein features are effectively 

detected. 

To refine these features and eliminate noise, the 

system employs a Local Mean Thresholding 

technique. This adaptive method dynamically 

adjusts to local intensity variations within the 

image, effectively isolating relevant vein patterns 

while suppressing irrelevant background regions. 

This enhances the clarity and usability of the 

extracted vein features, even under challenging 

lighting or image quality conditions. 

Furthermore, the system introduces an innovative 

component called Unsupervised Vein 

Information Mining (UVIM). UVIM addresses 

the problem of limited labeled data by learning to 

highlight vein-specific features in an 

unsupervised manner. It automatically 

identifies and emphasizes consistent patterns 

across different samples, improving the 

discriminative power of the feature 

representations without relying on manual 

annotations. 

VI SYSTEM ARCHITECTURE 

 

VII IMPLEMENTATION 

a comprehensive vein recognition system is 

designed by combining shape-based, texture-

based, and deep feature-based techniques to 

extract distinctive features from finger vein 

patterns. Shape-based methods analyze the 

geometric structure and branching of veins, while 

texture-based methods capture local surface 

variations and pixel intensity distributions. Deep 

feature-based approaches utilize convolutional 

neural networks to learn high-level abstractions 

of vein patterns, making the system more resilient 

to variations in lighting, orientation, and scale. A 
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critical component of the system is the Selected 

Feature Maps Generation Module, which 

refines and selects multi-scale features from a 

pre-trained deep learning model. This module 

ensures that only the most discriminative and 

relevant vein features are retained for further 

processing, significantly improving the accuracy 

and robustness of the recognition system. 

The system includes a web-based interface that 

provides an intuitive platform for users to upload 

their finger vein images. Once an image is 

submitted, it undergoes preprocessing operations 

such as resizing and normalization to prepare it 

for model input. The preprocessed image is then 

forwarded to the trained deep learning model, 

which extracts feature vectors and generates a 

feature matrix. This matrix is used to predict the 

user’s identity with high precision. The 

implementation ensures seamless communication 

between the front-end and back-end components, 

allowing for real-time processing and immediate 

feedback. By integrating advanced deep learning 

techniques with an easy-to-use interface, the 

system achieves high recognition accuracy, user 

convenience, and practical applicability in 

biometric authentication scenarios. 

RESULTS 
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The system performed effectively under standard 

conditions, with successful image preprocessing 

(resizing and normalization), accurate multi-scale 

feature extraction from the conv5_1 and pool5 

layers, and high-confidence classification using 

the SVM model, confirming that the core 

modules are functioning as intended. The 

Streamlit interface enabled smooth, real-time 

image uploads and predictions, making the 

system user-friendly and suitable for deployment. 

However, limitations were observed in handling 

edge cases—blank or white images were 

misclassified with high confidence instead of 

being rejected, and cropped finger images with 

incomplete vein patterns resulted in incorrect 

predictions. These issues highlight the need for 

improved input validation, uncertainty handling, 

and robustness to ensure consistent performance 

in real-world applications. 

CONCLUSION 

This vein recognition project effectively 

enhances the accuracy of personal identification 

by leveraging distinctive hand vein patterns 

through a deep learning-based approach. The 

system intelligently combines multi-layered 

feature extraction and background noise 

reduction to focus on the most relevant vein 

structures, ensuring robust recognition 

performance. With a user-friendly Streamlit 

interface, it enables real-time image uploads and 

immediate results, making it practical for real-

world applications. While the system performs 

reliably with clear and complete images, future 

improvements are needed to handle challenging 

cases such as blank, low-quality, or cropped 

images more effectively. Overall, the project 

demonstrates significant potential for deployment 

in secure authentication systems across domains 

like healthcare, security, and identity verification, 

with room for further enhancement in robustness 

and adaptability. 
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