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Abstract 

Federated learning introduces a distributed paradigm for training machine learning models 

directly on edge devices, preserving user privacy by avoiding centralized data collection. This 

paper investigates the design, challenges, and performance of federated learning systems using 

mobile and IoT environments. We simulate federated training using TensorFlow Federated 

across 1,000 virtual clients and apply the approach to image classification using the MNIST 

and Fashion-MNIST datasets. Results indicate that federated averaging (FedAvg) achieves 

comparable accuracy to centralized models after 200 communication rounds, albeit with slower 

convergence and higher communication overhead. To address these issues, we implement 

techniques such as client selection, model compression via quantization, and asynchronous 

updates. We evaluate trade-offs in privacy, accuracy, and efficiency, particularly under 

scenarios with non-IID data and client dropout. Our findings show that while communication 

costs remain a bottleneck, privacy advantages are significant, particularly in applications such 

as keyboard prediction and health monitoring. We also analyze potential vulnerabilities, 

including inference attacks from gradient leakage. Federated learning represents a promising 

avenue for privacy-centric AI applications, though further research is needed in secure 

aggregation, adaptive compression, and real-world deployment in heterogeneous networks. 

This paper provides foundational insights for deploying federated AI in edge-rich environments 

without sacrificing model performance or user data integrity. 

2. Introduction 

The rapid proliferation of smart devices and connected sensors has led to an explosion of user-

generated data residing at the edge of networks. Traditional machine learning pipelines rely on 

centralized data aggregation, which raises significant privacy concerns—particularly in 

domains such as healthcare, finance, and personal communication. Federated learning (FL) 

addresses these concerns by enabling decentralized model training directly on user devices, 

thus keeping data local and minimizing privacy exposure. 

Originally introduced by Google for applications like Gboard's predictive keyboard, FL has 

since evolved into a general framework for privacy-preserving, distributed machine learning. 

In FL, a global model is trained by aggregating locally computed updates from a selected set 

of clients, without transferring raw data to the cloud. While promising, federated learning 

presents unique challenges related to non-IID data distributions, heterogeneous device 

capabilities, communication overhead, and model convergence stability. 

This paper explores the implementation and evaluation of federated learning in simulated 

mobile and IoT environments. Using TensorFlow Federated (TFF) and benchmark datasets 

like MNIST and Fashion-MNIST, we simulate training across 1,000 virtual clients. We 

analyze core aspects such as convergence speed, accuracy, and privacy trade-offs, and test 

optimization strategies including client selection, model quantization, and asynchronous 
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updating. Our results provide insights into balancing performance with privacy in real-world 

decentralized AI systems. 

 

3. Hypothesis 

This study is guided by the following hypotheses: 

• H1: Federated learning using the FedAvg algorithm can achieve model accuracy 

comparable to centralized training under IID data distributions, albeit with increased 

training time due to communication constraints. 

• H2: Communication-efficient strategies such as client sampling, quantization, and 

asynchronous updates can improve convergence speed and reduce overhead without 

significantly impacting model accuracy. 

• H3: Federated learning provides a quantifiable privacy advantage by keeping user data 

localized, though vulnerability to gradient-based inference attacks persists. 

• H4: Non-IID data distributions and client dropout degrade model performance, 

necessitating adaptive aggregation strategies and fault-tolerant training protocols. 

These hypotheses are tested through extensive simulations of federated training across multiple 

experimental conditions involving client heterogeneity and network variability. 

 

4. Experimental Setup 

4.1 Platform and Environment 

Federated learning simulations were conducted using TensorFlow Federated (TFF) v0.8, 

running on a cluster of virtual clients simulated on a multi-node environment using Docker 

containers. The experiments were executed on: 

• CPU: Intel Xeon 2.3 GHz, 32 cores 

• RAM: 128 GB 

• Software: Python 3.6, TensorFlow 1.13, TFF runtime 

• Client count: 1,000 virtual clients (5–10% participating per round) 

4.2 Datasets 

Two public datasets were used: 

• MNIST: Handwritten digit classification, 60,000 training and 10,000 testing samples. 

• Fashion-MNIST: Image classification of clothing items, with identical sample counts 

and resolution. 

Data was partitioned across clients using both IID (independent and identically distributed) 

and non-IID strategies to evaluate training under real-world skewed distributions. For non-IID 

setups, each client received data from only 2–3 specific classes. 
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4.3 Federated Learning Algorithm 

The Federated Averaging (FedAvg) algorithm was used as the baseline. Key parameters: 

• Communication rounds: 200 

• Client batch size: 32 

• Local epochs per round: 1–5 

• Optimizer: Stochastic Gradient Descent (SGD) 

• Learning rate: 0.01 

Variants of FedAvg were tested with: 

• Random client sampling (10% per round) 

• 8-bit quantized model updates 

• Asynchronous weight updates 

4.4 Evaluation Metrics 

Model performance was evaluated using: 

• Top-1 accuracy on test data 

• Training convergence (loss over rounds) 

• Communication cost per round (MB transferred) 

• Gradient leakage vulnerability score (based on reconstruction accuracy from 

updates) 

• Time-to-accuracy (wall-clock time to reach 95% of centralized model accuracy) 

 

5. Procedure 

1. Centralized Baseline Training 

o Trained a global CNN model on the full dataset using standard SGD and 

evaluated it on the test set to establish upper-bound accuracy benchmarks. 

2. Federated Learning (FedAvg) Setup 

o Initialized a global model on the server. 

o At each round, randomly selected 10% of clients. 

o Each selected client trained locally on its data for 1–5 epochs, then returned 

model updates. 

o Server aggregated updates using weighted averaging. 

3. Non-IID Partitioning 
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o Created non-IID splits where each client received samples from 2 classes only, 

introducing label skew. 

o Observed the effect on convergence and generalization. 

4. Compression and Asynchrony Tests 

o Applied quantization to reduce update size before transmission. 

o Introduced simulated client latency to test asynchronous update aggregation. 

5. Privacy Risk Assessment 

o Conducted simulated inference attacks by reconstructing client data from 

gradients using known methods (e.g., iDLG). 

o Assessed reconstruction fidelity and whether attacker could identify original 

labels or image features. 

6. Result Logging and Analysis 

o Tracked accuracy, loss, communication volume, and attack metrics at each 

round. 

o Plotted convergence curves and time-to-accuracy under all configurations. 

 

6. Data Collection and Analysis 

6.1 Accuracy and Convergence 

Under IID conditions, the federated model reached 95.5% accuracy on MNIST after 

approximately 160 communication rounds, closely matching the centralized benchmark of 

97%. Fashion-MNIST convergence was slower, reaching 89.7% accuracy after 200 rounds. In 

contrast, non-IID data splits resulted in slower and lower convergence, with final accuracies 

of 92.2% (MNIST) and 86.1% (Fashion-MNIST). This performance gap highlights the 

sensitivity of FL to data distribution skew, a common challenge in edge environments. 

6.2 Communication Overhead 

Model updates averaged 3.2 MB per round per client using float32 weights. With 10% client 

participation, total round-wise communication peaked at 320 MB. Applying 8-bit 

quantization reduced update size to 0.8 MB/client—a 75% reduction—with less than 1% 

accuracy drop, confirming the value of compression techniques in bandwidth-constrained 

scenarios. 

6.3 Impact of Asynchronous Updates 

In simulated asynchronous conditions (randomized 10–30% client latency), convergence was 

slightly slower (by ~12 rounds on average), but final accuracy was unaffected. This indicates 

that FedAvg remains robust even when not all clients respond uniformly, provided that 

straggler tolerance and update buffering are managed correctly. 

6.4 Gradient Leakage Risk 
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We tested the vulnerability of local updates to gradient inversion attacks using iDLG. When 

using full-resolution updates without secure aggregation, we successfully reconstructed digit 

contours from 9 out of 100 clients. However, quantized updates and client sampling 

significantly reduced the reconstruction fidelity, supporting the hypothesis that FL offers a 

degree of inherent privacy defense, though not complete immunity. 

 

Figure 1. Comparison of test accuracy over communication rounds for Federated Averaging 

(FedAvg) under IID and Non-IID data distributions. IID training leads to faster and higher 

convergence, while Non-IID scenarios exhibit slower improvement and a lower accuracy 

ceiling due to client data heterogeneity. 

 

7. Results 

Metric Centralized 
FedAvg 

(IID) 

FedAvg (Non-

IID) 

FedAvg + 

Quant. 

MNIST Accuracy (%) 97.0 95.5 92.2 94.7 

Fashion-MNIST Accuracy (%) 90.2 89.7 86.1 89.2 

Communication per Round 

(MB) 
N/A 320 320 80 

Convergence Rounds (95% 

accuracy) 
45 160 185 170 

Time per Round (Simulated, 

seconds) 
N/A 6.4 7.3 5.1 

Gradient Leakage Detection 

Rate (%) 
N/A 9.0 10.3 2.1 
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The results confirm that FedAvg under IID distributions approaches centralized 

performance, though with greater latency and data transfer. Compression and asynchrony 

help mitigate overhead, while non-IID data increases convergence time and reduces final 

model accuracy. Nonetheless, federated models still outperform fully local models and 

provide meaningful privacy improvements compared to centralized data storage. 

 

8. Discussion 

Federated learning represents a viable and scalable alternative to centralized machine learning 

in environments where data privacy, bandwidth, and user control are critical. Our study 

reinforces several important observations for practical deployment: 

• Model accuracy is sensitive to data distribution. Real-world edge devices often 

contain highly skewed, non-IID data. Addressing this requires strategies like 

personalized FL, adaptive weighting, and hierarchical aggregation. 

• Communication is the primary bottleneck. Even with client sampling and 

quantization, federated systems generate large volumes of data during training. 

Techniques such as sparsification, update compression, and selective model update 

scheduling are essential for scalability. 

• FL improves privacy but does not eliminate risk. Local data never leaves the device, 

but model updates can still leak sensitive information. Techniques such as secure 

aggregation, differential privacy, and homomorphic encryption can provide 

stronger guarantees, though often with additional computational cost. 

• Asynchronous FL is feasible and necessary. Edge clients differ in computation power 

and network stability. Supporting asynchronous updates and fault tolerance improves 

robustness in dynamic environments, a requirement for real-world deployment in 

mobile or IoT scenarios. 

• System integration matters. Privacy benefits can be nullified by weak 

implementations, such as insecure memory access, unverified client software, or 

metadata leakage. A holistic approach—combining cryptographic protocols, secure 

software engineering, and federated optimization—is required to realize the full 

benefits of FL. 

 

9. Conclusion 

This paper presented an experimental evaluation of federated learning using TensorFlow 

Federated across 1,000 simulated clients and benchmark datasets. We confirmed that FedAvg 

can achieve performance close to centralized training under IID conditions, with trade-offs 

in communication cost and convergence time. Techniques like quantization and client 

sampling reduce resource usage with minimal impact on accuracy, making FL more practical 

for deployment in edge-rich environments. 

Under non-IID distributions, model accuracy declined modestly, emphasizing the importance 

of adaptive aggregation and personalization strategies. Additionally, while federated learning 
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improves data privacy by design, gradient inversion attacks remain a concern—

necessitating stronger cryptographic protections and awareness of attack surfaces in model 

updates. 

Overall, federated learning is a promising architecture for AI systems that prioritize privacy, 

user autonomy, and distributed intelligence. Future work should focus on improving 

communication efficiency, robustness to non-IID data, and integration of advanced 

security mechanisms. With continued research and engineering refinement, FL can become a 

core pillar of ethical, scalable, and decentralized machine learning systems. 

 

References 

1. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., ... & 

van Overveldt, T. (2019). Towards federated learning at scale: System design. 

Proceedings of the 2nd SysML Conference. 

2. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & 

Zhao, S. (2019). Advances and open problems in federated learning. arXiv preprint 

arXiv:1912.04977. 

3. Jena, J. (2018). The impact of gdpr on u.S. Businesses: Key considerations for 

compliance. International Journal of Computer Engineering and Technology, 9(6), 309-

319. https://doi.org/10.34218/IJCET_09_06_032 

4. Bellamkonda, S. (2019). Securing Data with Encryption: A Comprehensive Guide. 

International Journal of Communication Networks and Security, 11, 248-254. 

5. McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). 

Communication-efficient learning of deep networks from decentralized data. 

Proceedings of the 20th International Conference on Artificial Intelligence and 

Statistics, 1273–1282. 

6. Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2019). Federated learning: Challenges, 

methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. 

7. Hard, A., Rao, K., Mathews, R., Beaufays, F., Augenstein, S., Eichner, H., ... & Ramage, 

D. (2018). Federated learning for mobile keyboard prediction. arXiv preprint 

arXiv:1811.03604. 

8. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., & Chandra, V. (2018). Federated learning 

with non-IID data. arXiv preprint arXiv:1806.00582. 

9. Caldas, S., Wu, P., Li, T., Konečný, J., McMahan, H. B., Smith, V., & Talwalkar, A. 

(2018). LEAF: A benchmark for federated settings. arXiv preprint arXiv:1812.01097. 

10. Melis, L., Song, C., De Cristofaro, E., & Shmatikov, V. (2019). Exploiting unintended 

feature leakage in collaborative learning. IEEE Symposium on Security and Privacy, 

691–706. 

11. Kolla, S. (2019). Serverless Computing: Transforming Application Development with 

Serverless Databases: Benefits, Challenges, and Future Trends. Turkish Journal of 

Computer and Mathematics Education, 10(1), 810-819. 

https://doi.org/10.61841/turcomat.v10i1.15043 

12. Zhu, L., Liu, Z., & Han, S. (2019). Deep leakage from gradients. Advances in Neural 

Information Processing Systems, 32, 14774–14784. 

http://www.ijmece.com/
https://doi.org/10.34218/IJCET_09_06_032


                ISSN 2321-2152 

                   www.ijmece.com  

                Vol 7, Issue 4, 2019 

 

 
 

29 

13. Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning. Proceedings of 

the 22nd ACM SIGSAC Conference on Computer and Communications Security, 1310–

1321. 

14. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, 

L. (2016). Deep learning with differential privacy. Proceedings of the 2016 ACM 

SIGSAC Conference on Computer and Communications Security, 308–318. 

15. Truex, S., Liu, L., Gursoy, M. E., Yu, L., & Wei, W. (2019). Demystifying privacy in 

federated learning. Proceedings of the 2nd ACM International Workshop on Security 

and Privacy for Artificial Intelligence, 1–8. 

16. Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A 

client level perspective. arXiv preprint arXiv:1712.07557. 

17. Sattler, F., Wiedemann, S., Müller, K. R., & Samek, W. (2019). Robust and 

communication-efficient federated learning from non-IID data. IEEE Transactions on 

Neural Networks and Learning Systems, 1–14. 

18. Li, X., Huang, K., Yang, W., Wang, S., & Zhang, Z. (2019). On the convergence of 

FedAvg on non-IID data. International Conference on Learning Representations 

(ICLR), Workshop Track. 

 

 

http://www.ijmece.com/

