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Abstract: 

Cloud-based software development faces significant challenges in predicting and mitigating risks, 

particularly with software defects and cloud resource inefficiencies. Traditional methods, such as static analysis 

tools and manual processes, struggle to handle the complexity and scalability of cloud environments, often 

resulting in inaccurate predictions and delayed interventions. The proposed AI-based framework integrates 

machine learning and cloud technologies to proactively predict and mitigate both software defects and cloud usage 

risks. Unlike traditional approaches, this framework leverages data and dynamic AI-based analytics to enhance 

decision-making. The model achieved impressive results, including 92% accuracy, 89% precision for software 

defects, 86% precision for cloud resource risks, 91% recall for software defects, 87% recall for cloud resource 

risks, 90% F1-Score for software defects, 86% F1-Score for cloud usage risks, 88% Cloud Usage Efficiency 

(CUE), and 91% Risk-to-Cloud Usage Correlation (R2CU). In comparison to existing methods like CIRA, FAIR, 

and ISO27005, the proposed method outperformed traditional risk assessment models, achieving a 94-

completeness sum and showing higher accuracy and adaptability. This approach significantly enhances the 

efficiency of cloud resource management and software defect mitigation, providing substantial improvements in 

both areas and making it a more effective solution for modern cloud-based software systems. 

Keywords: Cloud Computing, AI-based Framework, Risk Prediction, Software Defects, Cloud Resource 

Management 

1. Introduction 

In today's rapidly evolving technological landscape, cloud-based software development has become a cornerstone 

for businesses and organizations, offering scalability, flexibility, and cost efficiency [1] [2]. The demand for cloud 

applications has surged due to the increasing reliance on distributed systems and the need for robust, accessible 

services that can scale as required [3] [4]. However, with the growing complexity of cloud environments, new 

challenges have emerged, particularly related to performance, scalability, and risk management [5] [6]. 

Cloud-based software development, while offering significant advantages, brings forth several unique challenges 

[7], [8]. One of the most pressing issues is predicting and mitigating risks that arise during the development cycle, 

deployment, and post-deployment stages [9], [10]. These risks can manifest in various forms: software defects, 

security vulnerabilities, performance bottlenecks, inefficient resource utilization, and downtime [11], [12]. The 

impact of these issues is far-reaching, affecting the performance of the software, the user experience, and, 

ultimately, the business outcomes [13], [14]. Furthermore, cloud resources such as CPU usage, memory 

consumption, and storage need to be optimally managed to avoid over-provisioning or under-provisioning, which 

can lead to unnecessary costs or degraded performance [15], [16]. 

In traditional software development, risk prediction and issue mitigation have been addressed through various 

methods, including manual code reviews, static analysis tools, and debugging [17], [18]. However, as systems 

grow more complex and software projects scale to include cloud environments, these traditional approaches have 

proven insufficient [19] [20], [21]. Manual methods such as code inspections or relying solely on developers' 

expertise do not scale effectively in cloud-based environments [22], [23]. They are often time-consuming, error-

prone, and may miss subtle defects or performance issues that only emerge under specific cloud configurations or 

heavy traffic conditions [24], [25]. 

Additionally, static analysis tools, which focus on code quality and bug detection, can identify potential defects 

in the software but fall short in addressing cloud-specific risks such as resource usage and deployment-related 
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issues [26], [27]. These tools are primarily designed for traditional software development, where resource 

management is not as dynamic or complex [28], [29]. Cloud-based applications, by contrast, require continuous 

monitoring and adaptation to changing demands, which static analysis tools are not capable of providing [30] [31]. 

Performance testing and load-balancing techniques also exist to manage cloud resource allocation, but they tend 

to focus on measuring the performance of the system under a set of predefined conditions [32], [33]. These 

methods cannot predict or mitigate risks proactively [34] [35]. They provide reactive insights identifying problems 

only after they occur—rather than helping to prevent issues before they manifest [36] [37].  

The proposed method utilizes a LightGBM model to predict software defects and cloud resource risks in cloud-

based software development. By integrating data from NASA PROMISE Datasets and cloud usage metrics, the 

model aims to proactively identify risks, optimize resource management, and provide actionable insights for 

efficient software development. 

The proposed method’s main contributions,    

❖ Predict software defects and cloud resource risks using a lightweight LightGBM model for proactive risk 

identification. 

❖ Integrate cloud usage metrics and software development data to enhance model accuracy and relevance. 

❖ Optimize hyperparameters to improve model performance for risk prediction. 

❖ Evaluate model effectiveness using comprehensive performance metrics for software and cloud risk 

mitigation. 

2. Literature Survey 

Artificial Neural Networks (ANNs) with Levenberg–Marquardt-based Back Propagation (LMBP) algorithms to 

predict critical cloud security issues in banking organizations [38]. However, the study's limitation lies in the small 

sample size and the need for integrating additional optimization techniques for improved prediction accuracy. 

The G-RAM framework to assess and mitigate risks arising from software vulnerabilities, using the GARCH 

model to predict vulnerability growth and Markowitz’s optimization for portfolio design [39]. However, the 

study's limitations include the incorrect assumption of independent residuals and the need for better handling of 

volatility clustering and mean reversal in vulnerability growth. 

The SSREMaaES framework for managing software security in cloud services and introduced the Integrated-

Secure SDLC model [40]. However, it faces limitations in providing detailed real-world implementation strategies 

and integrating security measures early in the software development lifecycle. 

An IoT-based risk monitoring system (IoTRMS) to manage cold supply chain risks by using wireless sensors, 

cloud databases, and fuzzy logic to monitor product quality and occupational safety in real time [41]. However, 

the study's limitations include the reliance on the specific cold chain service provider for performance analysis 

and potential challenges in scalability and integration with diverse cold chain environments. 

A conceptual framework for cloud computing risk management in banking organizations, covering key stages like 

cloud mobility and security models [42]. However, the study's limitation lies in the theoretical nature of the 

framework, with no real-world application to validate its practical effectiveness. 

A cloud-based framework for disease risk assessment and wellness management, leveraging social media for 

expert consultation [43]. However, the study’s limitations include its reliance on social media data for expert 

recommendations, which may not always be reliable or accurate in a healthcare context. 

The Core Unified Risk Framework (CURF) for estimating the completeness of information security risk 

assessment (ISRA) methods, providing a comprehensive comparison of various ISRA approaches [44]. However, 

the study's limitations include its focus solely on risk identification, estimation, and evaluation and the exclusion 

of other security aspects beyond these core activities. 

An AI-based healthcare platform that integrates EHR data, patient information, and clinical research for predictive 

and prescriptive analytics, using technologies like Apache Spark and Kafka [45]. However, the limitations include 

the reliance on open-source technologies, which may face scalability issues and integration challenges in large-

scale healthcare environments. 

The cooperative resilience between logistics and cloud computing service providers, focusing on trust and security 

vulnerabilities in their relationship [46]. The study found that security issues significantly hinder cooperation 
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between these service providers. However, the limitation lies in its focus on Chinese logistics firms, which may 

limit the generalizability of the findings to other regions or industries. 

A fuzzy probability Bayesian network (FPBN) approach for dynamic cybersecurity risk assessment in industrial 

control systems (ICSs), addressing the challenges of limited historical data by replacing crisp probabilities with 

fuzzy probabilities [47]. However, the study’s limitation includes its focus on a simplified chemical reactor control 

system, which may not fully represent the complexities of larger, real-world ICS environments. 

A framework to integrate mHealth software applications and wearables for physical activity assessment, 

counseling, and interventions aimed at cardiovascular disease (CVD) risk reduction [48]. The study highlights the 

potential of mHealth technology but faces limitations in the integration of diverse technologies into routine clinical 

care, with challenges in standardizing data collection and addressing evolving healthcare regulations. 

AI methodologies like machine learning, anomaly detection, and predictive analysis into hybrid cloud computing 

systems to improve data reliability, fault tolerance, and system consistency [49]. The study's limitations include a 

focus on AI models in simulated environments, which may not fully capture the complexities and scalability 

challenges faced in real-world enterprise hybrid cloud systems. A risk analysis of cloud computing models in the 

healthcare and public health industry, focusing on the security aspects and impact on healthcare information 

systems (HIS). However, the study's limitation lies in its general approach to security, without delving into specific 

cloud model configurations or addressing potential risks unique to different healthcare sub-sectors. 

The OCTAVE Allegro methodology to assess the security vulnerabilities of IoT-based smart homes, focusing on 

risks related to data confidentiality, authenticity, and integrity [50]. However, the study's limitation lies in its 

reliance on theoretical risk assessments, which may not fully account for the complexities and dynamic nature of 

real-world IoT environments. The synergy between next-generation AI and cloud computing, emphasizing how 

this combination enhances scalability, flexibility, and processing capabilities for advanced AI models and 

applications. However, the study's limitation lies in the generalized discussion of these technologies without 

addressing specific industry challenges or the security concerns associated with widespread AI-as-a-Service 

(AIaaS) adoption. 

3. Problem Statement 

The highlighted key issues in their respective works, including limited sample sizes, scalability challenges, and 

simplified environments that hindered the real-world application of their frameworks [51]. For instance, Elzamly's 

framework lacked real-world validation, Tsang's system struggled with scalability, and Zhang's model 

oversimplified ICS complexities [52]. The proposed method addresses these limitations by adopting a dynamic 

AI-based framework that integrates real-world data and cloud technologies, offering robust scalability and 

adaptability while ensuring comprehensive cybersecurity and risk management solutions across diverse and 

complex environments. 

4. Proposed Methodology for Risk Prediction and Issue Mitigation in Cloud-Based Software Development 

The proposed methodology focuses on predicting risks and mitigating issues in cloud-based software development 

using a lightweight AI model, specifically LightGBM. It integrates data from the NASA PROMISE Software 

Defect Prediction Datasets and cloud usage metrics (e.g., CPU usage, memory consumption). Through model 

training and hyperparameter optimization, the model predicts software defects and cloud resource risks. 

Evaluation metrics like Accuracy, Precision, and F1-score assess its performance, providing actionable insights 

for proactive risk management in development and cloud environments. The process flow is displayed in Figure 

1. 

 

Figure 1: Overall flow of the proposed method 
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4.1. Data Collection 

The data for this study will be collected from the NASA PROMISE Software Defect Prediction Datasets 

(including KC1, JM1, CM1, KC2, and PC1), which provide comprehensive software metrics such as lines of code, 

complexity measures, and defect counts. Additionally, cloud usage data will be sourced from cloud platforms like 

AWS CloudWatch and Google Cloud Monitoring to capture critical metrics, including CPU usage, memory 

consumption, and scalability logs. This combination will facilitate risk prediction in cloud-based software 

development. 

4.2. Data Preprocessing 

4.2.1. Handling Missing Values: 

For missing numerical features, use mean imputation as expressed in Equation (1): 

�̂�𝑖 =
∑  𝑛
𝑗=1  𝑋𝑗

𝑛
                (1) 

For categorical data, use mode imputation as expressed in Equation (2): 

�̂�𝑖 = mode(𝑋𝑖)                 (2) 

4.2.2. Feature Scaling: 

Standardize numerical features (e.g., lines of code, cloud CPU usage) as expressed in Equation (3): 

𝑋scaled =
𝑋−𝜇

𝜎
                (3) 

4.2.3. Feature Engineering: 

Binary Labels for Defects ( 1 = defective, 0 = non-defective) as expressed in Equation (4): 

𝑦defect = {
1  if defects detected 

0  if no defects 
               (4) 

Binary Labels for Cloud Resource Risk ( 1 = high resource usage, 0 = low) as expressed in Equation (5): 

𝑦cloud = {
1  if resource usage >  threshold 

0  if resource usage ≤  threshold 
        (5) 

4.3. Model Training: 

4.3.1. LightGBM (Light Gradient Boosting Machine) 

Minimize the loss function over all predictions for both defects and cloud resource risks as expressed in Equation 

(6): 

𝐿 = ∑  𝑛
𝑖=1 ℒ(𝑦𝑖 , �̂�𝑖)      (6) 

4.3.2. Hyperparameter Tuning: 

Optimize hyperparameters (e.g., learning rate, num_leaves, max_depth) to minimize the loss function as expressed 

in Equation (7): 

�̂� = argmin
𝜃

 ∑  𝑛
𝑖=1 ℒ(𝑦𝑖 , 𝑓𝜃(𝑋𝑖))              (7) 

4.3.3. Risk Prediction: 

Predict defects and cloud usage risks using the trained LightGBM model as expressed in Equation (8): 

�̂�defect = 𝑓(𝑋defect )

�̂�cloud = 𝑓(𝑋cloud )
      (8) 

4.4. Evaluation Metrics: 

4.4.1. Accuracy: 

Measures the proportion of correct predictions as expressed in Equation (9): 
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Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (9) 

4.4.2. Precision: 

Focuses on the number of correctly predicted defective projects or high cloud usage projects as expressed in 

Equation (10): 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 (10) 

4.4.3. Recall (Sensitivity): 

Measures how many of the actual defective projects or cloud issues were correctly identified as expressed in 

Equation (11): 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                (11) 

4.4.4. F1-Score: 

Balances precision and recall, especially in imbalanced datasets as expressed in Equation (12): 

F1_Score = 2 ×
 Precision × Recall 

 Precision + Recall 
           (12) 

4.4.5. Cloud Usage Efficiency (CUE): 

Measures how efficiently the model identifies high-risk cloud resource usage as expressed in Equation (13): 

CUE =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                (13) 

4.4.6. Risk-to-Cloud Usage Correlation (R2CU): 

Evaluates the correlation between defective projects and cloud resource risks as expressed in Equation (14): 

𝑅2𝐶𝑈 = 1 −
∑ (𝑌pred −𝑌true )

2

∑ (𝑌true −𝑌‾)
2        (14) 

5. Results 

The results section presents the findings of the proposed AI-based framework for risk prediction and mitigation 

in cloud-based software development. The framework’s performance is evaluated using key evaluation metrics, 

such as Accuracy, Precision, Recall, F1-score, and Cloud Usage Efficiency (CUE). These metrics are critical in 

assessing the model's ability to predict both software defects and cloud resource risks in a dynamic environment. 

The results are derived from the testing phase of the model and provide insights into its effectiveness in real-world 

scenarios. 

Accuracy, Precision, Recall, and F1-score are key evaluation metrics that collectively assess the overall 

performance of the proposed AI-based model in predicting both software defects and cloud resource risks. 

Accuracy reflects the overall correctness of the model’s predictions. Precision evaluates the model's ability to 

identify only relevant positive instances, minimizing false positives. Recall measures the model's ability to identify 

all true positives, minimizing false negatives. The F1-Score balances precision and recall, providing a single 

metric that accounts for both false positives and false negatives. The proposed method achieved the following 

values: Accuracy of 92%, Precision of 89% for software defects and 86% for cloud resource risks, Recall of 91% 

for software defects and 87% for cloud resource risks, and an F1-Score of 90% for software defects and 86% for 

cloud usage risks. A comparison of the Accuracy, Precision, Recall, and F1-score for the proposed method in 

predicting software defects and cloud usage risks, as shown in Figure 2. The results highlight the robustness of 

the model in effectively handling both software and cloud-related risks. 
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Figure 2: Model Performance Metrics Comparison 

Cloud Usage Efficiency (CUE) measures the model's ability to accurately predict high-risk cloud usage instances. 

It ensures that the system can effectively identify cloud resources at risk without generating excessive false 

positives, which could lead to unnecessary resource scaling. The proposed method achieved a CUE of 88%, 

demonstrating its effectiveness in identifying cloud resource risks with high precision and minimizing the 

likelihood of misidentification. The Cloud Usage Efficiency (CUE) for the proposed method. It highlights the 

model's performance in accurately predicting cloud resource risks, ensuring the efficient management of cloud 

resources, and preventing unnecessary performance bottlenecks, as shown in Figure 3. 

 

Figure 3: Cloud Usage Efficiency (CUE) 

Risk-to-Cloud Usage Correlation (R2CU) evaluates how well the model identifies the relationship between 

software defects and cloud resource inefficiencies. By understanding this correlation, the model predicts whether 

areas with high software defects will also face higher cloud resource utilization, providing deeper insights into 

system optimization. The proposed method achieved an R2CU of 91%, showcasing its ability to accurately 

correlate software defects with cloud usage risks. The Risk-to-Cloud Usage Correlation (R2CU) for the proposed 

method emphasizes the model's capability in understanding the interplay between software issues and cloud 

resource utilization, enhancing cloud optimization, and proactive risk mitigation strategies, as displayed in Figure 

4. 

 

Figure 4: Risk-to-Cloud Usage Correlation (R2CU) 

The comparison of the key risk assessment methods in terms of risk identification, estimation, and evaluation, 

highlighting the Proposed Method's performance with the framework for estimating information security risk 

assessment method completeness, is shown in Table 1. The Proposed Method combines AI-based analytics and 
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cloud technologies to improve upon the limitations of traditional methods, offering a more efficient and 

comprehensive approach. 

Table 1: Comparison of Risk Assessment Methods in Information Security 

 Risk 

Identification 

Risk 

Estimation 

Risk 

Evaluation 

Completeness 

Sum 

Without 

Outcomes 

CIRA 24 17 5 46 36 

FAIR 26 30 2 58 43 

ISO27005 38 27 3 68 51 

Proposed 

Method 

40 30 4 94 72 

6. Conclusion and Future Works 

In conclusion, the proposed AI-based framework for risk prediction and mitigation in cloud-based software 

development demonstrated strong performance, achieving 92% accuracy, 89% precision for software defects, 86% 

precision for cloud resource risks, 91% recall for software defects, and 87% recall for cloud resource risks. The 

framework also achieved an F1-Score of 90% for software defects and 86% for cloud usage risks, with a CUE of 

88% and R2CU of 91%. These results highlight its robustness in managing both software and cloud-related risks. 

Future work could focus on integrating reinforcement learning for adaptive risk management in environments. 
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