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ABSTRACT: Efficient summation of multiple operands in parallel is a critical aspect of various 

digital signal processing units. To accelerate this process, high compression ratio counters and 

compressors are indispensable. The summation of multiple operands in parallel forms part of the 

critical path in various digital signal processing units. To speed up the summation, high 

compression ratio counters and compressors are necessary. In this project, we present a novel 

method of fast saturated binary counters and exact/approximate (4:2) compressors based on 

sorting network. The inputs of the counter are asymmetrically divided into two groups, and fed 

into sorting networks to generate reordered sequences, which can be solely represented by one-

hot code sequences. Between the reordered sequence and the one-hot code sequence, three 

special Boolean equations are established, which can significantly simplify the output Boolean 

expressions of the counter. Using the above method, we construct and further optimize the (7,3) 

counter which can performs better in maximum than other designs in delay, area- delay product, 

power-delay product, respectively. It will be developed using Verilog HDL. Xilinx ISE tool is 

used to perform the Simulation and Synthesis. 

INTRODUCTION 

The summation of multiple operands is 

widely used in various digital signal 

processing (DSP) units and constitutes a part 

of the critical path. A basic multiplier circuit 

add all the partial products up with the 

Wallace Tree structure, whose performance 

is the bottleneck of the basic multiplier. 

Public-key cryptosystems, such as RSA and 

Elliptic Curve Cryptography (ECC), use big 

number multiplier based on Toom-Cook or 

Karatsuba algorithm to construct modular 

multipliers. Many papers have studied these 

two algorithms and implemented them with 

hardware. In  many parts of the circuit 

utilize the summation of multiple operands. 

Fully homomorphic encryption (FHE) is a 

post-quantum cryptosystem which provides 

strong security in cloud computing and it 

urgently needs Number Theoretic Transform 

(NTT) [6] to accelerate large number 

multiplication and polynomial 

multiplication. In some high radix [6] NTT 

implementations, the core processing unit is 

composed of the summation of multiple 

operands.  

The most famous multiple operands 

summation method is Wallace Tree structure 

and its improved method Reduced Wallace 

Tree. These methods use full adders as (3,2) 

counters to accelerate the summation, 

resulting in logarithmic time consumption. 

This type of structure is also called carry 

save structure. 

In several fields, including digital signal 

processing (DSP), computer vision, 

multimedia processing, image identification, 

and artificial intelligence, multipliers are 

some of the most important arithmetic 

functional units. These applications often 

need extensive multiplication, which 

consumes a lot of power. This high power 
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consumption makes it difficult to execute 

certain applications, particularly on mobile 

devices. Because of this, several research 

have suggested methods to lessen the load 

on multiplier circuits' power supplies. If the 

intended applications can tolerate mistake, 

that is, if they are connected to human 

senses, then approximating multiplication 

may be used to lower computer multiplier's 

power consumption. However, precise 

computer results are unnecessary because of 

the limits of the human senses, including the 

human eye's restricted visual spectrum and 

indeed the human ear's limited audible 

range. Mario Donato Marino served as 

assistant editor and oversaw the manuscript's 

scrutiny and final approval before 

publishing. In order to reduce cell space, 

time delay, & power consumption, 

approximation multipliers make a 

compromise on precision. 

When the input voltage of such a multiplier 

gets decreased, the critical path delay 

lengthens. Therefore, mistakes arise and 

approximate results are produced if the time 

route is violated. This second kind involves 

rethinking the precise circuitry of multipliers 

like the Wallace Tree Multiplier as well as 

the Dadda Tree Multiplier in order to alter 

their useful behaviour. Among the 

publications proposing new multipliers, the 

vast majority suggested inexact m-n 

compressors, which take in m inputs and spit 

out n outputs. Because the process of 

compressing partial products required much 

of the multiplier's energy and produced 

considerable route delay, these inefficient 

compressors were utilised to compress all 

partial products inside multiplication. 

Both complexity, size, and density for 

integrated circuits is quickly growing due to 

the expansion of applications as well as the 

improvement of semiconductor process 

technology. This comes at the cost of a sharp 

rise in power consumption, which then in 

turn shortens the useful life of gadgets and 

makes them more prone to malfunction. 

Fortunately, owing to our limited perceptual 

abilities, the quality of just what we perceive 

is unaffected by accuracy loss in a suitable 

range in so many applications including 

such multimedia, digital signal processing, 

or machine learning. That opens the door for 

approximation computation blocks to take 

the place of the more expensive full 

precision ones. 

Because in many digital systems, 

multiplication is indeed an essential process. 

Multipliers present a wide variety of 

approximative designs. Larger bit-width 

multipliers may benefit from hybrid-radix 

Commonly used is the Booth encoding 

technique, which relies on an estimate of the 

production of partial products. Compression 

trees are employed to apply the 

approximation for multipliers with lower bit 

widths, since the partial products for these 

multipliers are typically created using simple 

AND gates. 

LITERATURE SURVEY 

A Reduced Complexity Wallace Multiplier 

Reduction by R. S. Waters and E. E. 

Swartzlander 

Wallace high-speed multipliers use full 

adders and half adders in their reduction 

phase. Half adders do not reduce the number 

of partial product bits. Therefore, 

minimizing the number of half adders used 

in a multiplier reduction will reduce the 

complexity. A modification to the Wallace 

reduction is presented that ensures that the 

delay is the same as for the conventional 

Wallace reduction. The modified reduction 

method greatly reduces the number of half 

adders; producing implementations with 80 

percent fewer half adders than standard 

Wallace multipliers, with a very slight 

increase in the number of full adders. 

High-Speed ECC Processor Over NIST 

Prime Fields Applied With Toom–Cook 

Multiplication by J. Ding, S. Li and Z. Gu 
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In this paper, a high-speed elliptic curve 

cryptography (ECC) processor specialized 

for primes recommended by the National 

Institute of Standards and Technology 

(NIST) was constructed. Toom-Cook 

multiplication without division was 

proposed to implement modular 

multiplication for NIST primes. Compared 

with a traditional algorithm, the computation 

complexity was reduced from 16 base 

multiplications to 7 in 4-way Toom-Cook 

multiplication. Moreover, we introduced 

non-least-positive (NLP) form into our 

design, so that the carry chain in the large 

array accumulation was broken down, which 

greatly shortened the critical path and made 

parallel processing possible. In order to 

support NLP form and lazy reduction 

strategy, conventional fast reduction 

methods for NIST primes were also 

modified. In addition, pipeline technique at 

the level of point multiplication was used, so 

the latency of modular inverse can be 

covered. Implemented on the Xilinx Virtex-

6 FPGA platform, the ECC processor can 

perform a point multiplication every 54 μs at 

the cost of 30.3k LUTs and 48 DSPs. 

Synthesized with 180nm CMOS technology, 

the speed achieves 43.7 μs with 466k gate 

counts. These experimental results show a 

significantly better performance per area 

than previous works. 

VLSI Design of a Large-Number Multiplier 

for Fully Homomorphic Encryption by W. 

Wang, X. Huang, N. Emmart and C. Weems 

This paper presents the design of a power- 

and area-efficient high-speed 768000-bit 

multiplier, based on fast Fourier transform 

multiplication for fully homomorphic 

encryption operations. A memory-based in-

place architecture is presented for the FFT 

processor that performs 64000-point finite-

field FFT operations using a radix-16 

computing unit and 16 dual-port SRAMs. 

By adopting a special prime as the base of 

the finite field, the radix-16 calculations are 

simplified to requiring only additions and 

shift operations. A two-stage carry-look-

ahead scheme is employed to resolve carries 

and obtain the multiplication result. The 

multiplier design is validated by comparing 

its results with the GNU Multiple Precision 

(GMP) arithmetic library. The proposed 

design has been synthesized using 90-nm 

process technology with an estimated die 

area of 45.3 mm 2 . At 200 MHz, the large-

number multiplier offers roughly twice the 

performance of a previous implementation 

on an NVIDIA C2050 graphics processor 

unit and is 29 times faster than the Xeon 

X5650 CPU, while at the same time 

consuming a modest 0.97 W. 

Analysis of different architectures of counter 

based Wallace multipliers, by S. Asif and Y. 

Kong 

Multiplication is one of the most commonly 

used operations in the signal processing 

algorithms. Multipliers based on Wallace 

reduction tree provide an area-efficient 

strategy for high speed multiplication. A 

number of modifications are proposed in the 

literature to optimize the speed and area of 

the Wallace multiplier. Counter based 

Wallace multipliers are proved to provide 

faster operation as compared to the 

traditional Wallace multipliers. This work 

proposes a number of architectures for the 

counter based Wallace multipliers to analyse 

their performance for various bit lengths. 

Designs are synthesized using Synopsys 

Design Compiler in 90 nm process 

technology and the post synthesis delay and 

power results are obtained by using 

Synopsys Prime Time. The proposed 

counter based Wallace multipliers are also 

compared with traditional Wallace 

multiplier to evaluate the energy per 

operation of both designs. The synthesis 

results shows that the Power-Delay Product 

of the counter based Wallace multiplier is up 

to 17% lower as compared to the traditional 

Wallace multiplier. 
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Low-power and high-speed 4-2 compressor 

by A. Najafi, B. Mazloom-nezhad and A. 

Najafi 

Compressors are the most important 

component of multipliers. Multipliers 

themselves are important components that 

dictate the overall performance of arithmetic 

circuits. In this paper, a new 4-2 compressor 

architecture is proposed. This architecture 

uses Carry Generator Module (CGEN) 

which has been used for 5-2 and 7-2 

compressors already. The proposed 

architecture is compared with the best 

architecture presented in the literature in 

terms of power and delay. Interestingly, 

analysis shows that the proposed compressor 

architecture outperforms the best existing 

architecture both in terms of power and 

delay.  

EXISTING SYSTEM 

A compressor adder provides reduced delay 

over conventional adders using full adders 

and half adders. It is represented as N-r, 

where N represents the number of bits and r 

represents the total count of 1s present in N 

bits. It is termed as compressor so that it 

reduces the gate count and delay compared 

to other adder circuits. Studies are taken 

place to improve circuits of lower order 

compressors. 

The compressor circuits which can be used 

for multiplication process such as 5-3, 10-4, 

15-4 and 20-5 are explained in next 

subsection. The schematic view of 5-3 

compressor adder. In this compressor adder 

maximum of five bits can be added and a 

result of three bit is obtained .Maximum 

possible value obtained is 101, which is the 

three bit binary of decimal 5. 

In the figure n2, n3 and n4 are 4:1 

multiplexers which allow only one output to 

be high in an instant, which results in 

lowering the delay and consumes low 

power. In Fig. 2 schematic view of 10-4 

compressor adder obtained using incisive 

simulator in cadence is showed. In this4 

compressor adder maximum of ten bits can 

be added and a result of four bit is obtained. 

Maximum possible value obtained is 1010, 

which is the four bit binary of decimal 10. 

To expedite the compacting of partial 

products, high-speed parallel multipliers are 

using the 4-2 Carry Save Adder. Traditional 

implementations of such a 4-2 Carry Save 

Adder use a cascade of two complete adders, 

as illustrated in Fig.4.6.  

To do the summation of multiple operands 

in various digital signal processing units, we 

need to improve the properties of the 

processing units, by speeding up the process 

of counters used as the 

multiple operands. The Wallace tree 

structure is the best method for summation 

of multiple operands.Wallace tree structure 

method use (3,2) counters filled with full 

adders to speed up the summation and it 

gives logarithmic time consumption. 

So, to construct a structure with 

timeefficient to speed up the summation 

process many papers 

have discussed. Now we have a basic (7,3) 

counter designed by the symmetric bit 

stacking. The 

counters are used to count the number of 1’s 

bit in the given inputs. So, the counters that 

are used in digital processing units are used 

to countthe number of 1’s in input[1]. The 

limit of compression efficiency can be 

achieved bythe counter, if the counter is a 

saturated counter. The designs which are 

unsaturated counters will use too much area 

space and speed. This counter designed by 

symmetric stacking also consumes more 

power. The (7,3) counter designed using 

symmetric stacking is unsaturated but it is 

very fast compared to the other counter 

designs. These counters are unsaturated 

counters[1]thus, Fritz and Fam[4] proposed 

symmetric stacking method to make the(7,3) 

counter a saturated counter 
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Fig. 1 . Implementation of a conventional 4-

2 carry save adder.  

It uses 5 inputs (y1, y2, y3, y4, and cin) and 

3 outputs (y0, y1, and cin) with each 4-2 

carry save adder (sum, cout, and carry). 

PROPOSED SYSTEM 

Sorting network is an efficient parallel 

hardware network utilized for data sorting. 

The famous 0,1 principle shows that if a 

sorting network can sort a group of data 

whose elements are all 1-bit numbers, it can 

sort all types of numbers. In this paper, we 

only adopt it for 1-bit data sorting. 

A. Sorting Network Working Principle 

The typical 3-way and 4-way sorting 

networks are shown in Fig.2. Each vertical 

line represents a sorter which has two data 

inputs and two data outputs, and all data are 

1 bit numbers. The sorter always puts the 

larger input up, the smaller one down. In 

Fig.2, we give an input example: sequence 

[0, 1, 1, 1] represents the input of 4-way 

sorting network (4 SN), and sequence [0, 1, 

1] represents the input of 3-way sorting 

network (3 SN). For both 4 SN and 3 SN, 

the input sequences are reordered in the 

form of the larger number at the top and the 

smaller number at the bottom after 3 layers 

of sorter. 

As mentioned above, the sorter reorders two 

inputs according to numerical magnitudes. 

As for two 1-bit data, the logical circuit 

illustrated in Fig.3 can sort them easily. This 

means that 

 
Fig. 2. 3-way and 4-way sorting networks. 

 
Fig. 3. Tow inputs binary sorter. 

a sorter consumes one layer of 2-input basic 

logic gate, and the 3-way and the 4-way 

sorting networks both consume 3 layers of 

2-input basic logic gates. 

PROPOSED (7,3) COUNTER 

In this section, we construct an efficient 

(7,3) counter. As the main comparison 

object, we first briefly review the design in 

[11]. [11] proposed a very fast (6,3) counter 

with a symmetric stacking structure, and 

they constructed a (7,3) saturated counter on 

the basis of this (6,3) counter. Although it is 

the fastest compared to other (7,3) counter 

designs, its delay performamce is worse 

because of simply introducing a MUX on 

the critical path without any optimization. 

To solve the problem in [11], we propose 

this method of directly construct a (7,3) 

counter. Unlike the symmetric stacking 

structure, we start with two sorting networks 

asymmetrically as illustrated in Fig.2. By 

generating one-hot code sequences, we 

establish three special Boolean equations 

(equation (2), (13) and (15)) which 

significantly simplify the Boolean 

expressions related to outputs. 

A. Some Characteristics of Sorting Network 

According to the review in the previous 

section, we summarize two characteristics of 

sorting networks. 
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First, as shown in Fig.4, due to the fact that 

“1” is bigger than “0”, all the “1”s are at the 

top of the sequence if there exist “1”s, all the 

“0”s are at the bottom of the sequence if 

there exist “0”s. If there exist both “1”s and 

“0”s, there must be a position in the 

reordered sequence where there is the 

junction of “1” and “0”. If there are only 

“1”s or “0”s, we can manage the sequence 

by padding fixed one bit “1” at the top and 

one bit “0” at the bottom of the reordered 

sequence to make sure 0,1-junction always 

exits. 

Second, the reordered sequence has the same 

total number of “1”s and “0”s as the original 

sequence (the inputs of two sorting 

networks). Although the padded “1” would 

influence the total number of “1”s in the 

padded sequence, it is fixed, so we ignore it 

while counting. 

1) Asymmetric pre-reorder: As illustrated in 

Fig.2, both 3- way and 4-way sorting 

networks require 3 layers of binary sorter 

(the two binary sorters on the same layer in 

4-way sorting network can be calculated in 

parallel). Each layer of binary sorters 

consumes one basic two input logical gate 

layer, text colorredas shown in Fig.3. This 

means that the time consumed by the 3-way 

and 4-way sorting networks is almost the 

same. 

Based on this, we divide the 7 inputs of a 

(7,3) counter into two parts. One part 

contains 4 bits while the other contains 3 

bits. 

2) Find 0,1-Junction and one-hot code 

sequence: As shown in Fig.4, 0,1-junction 

can solely represent the reordered sequence 

under the promise of the extended fixed “0” 

and “1”. Notice that the position of the 0,1-

junction must be 1,0 from left to right. 

Therefore, we still utilizing the 4-way 

sorting network as an example and then we 

have the structure in Fig.5. 

This structure uses a Boolean expression 

(AB) to obtain a new sequence P0-P4. 

Because there is one and only one 0,1-

junction in the reordered and extended 

sequence, there is one and only one “1” in 

sequence P0-P4. This means that sequence 

P0-P4 is one-hot code which satisfies (“j” 

represents “OR” and “&” represents 

“AND”) 

P0jP1jP2jP3jP4 = 1 (1) 

If the sequence elements (P0-P4) are 

randomly divided into two groups, such as 

P0; P2; P4 as group 1, P1; P3 as group 2, 

then because of one and only one “1” in the 

sequence, we have 

P0jP2jP4 = P3jP4 (2) 

All results of random separation satidfy this 

rule. We also apply the same method on 3-

way sorting network’s output sequence, and 

get the one-hot code sequence Q0-Q3. This 

sequence also satisfies the rule above. 

C. Output Generation 

1) Basic output generation: Now we have 

two sequences P and Q. P0 = 1 means that 

There is no “1” in the input sequence of 4-

way sorting network, and P1 = 1 represents 

one “1” in it, and Pi = 1 represents i “1”s in 

it. So is sequence Q. 

Here are some symbol conventions. The 

outputs of (7,3) counter are denoted as 

C2;C1; S, and C2 has the most significant 

weight while S has the lowest weight. The 

total numbers of “1”s (“Num” column in the 

table) in the input 7 bits corresponding to 

outputs, i.e. Num = 22C2 +21C1 +20S. The 

sequence output from 4-way sorting network 

is denoted as sequence H, including H1-H4 

from left to right in Fig.4. The sequence 

output from 3-way sorting network is 

denoted as sequence I, including I1-I3 from 

left to right. 

According to Table.I, we know that at least 

four “1”s are in the input sequence of the 

(7,3) counter, when C2 = 1. As discussed 

before, P4 = 1 means that four “1”s are in 

sequence H (also in the input sequence of 4 

SN, because sorting network has no affect 

on total number of “1”s), and Q0 = 1 means 
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that no “1” is in sequence I. So P4&Q0 = 1 

means that there are totally 4 + 0 = 4 “1”s in 

the input 7 bits. As a result of this type of 

representation, C2 is equal to 1 when the 

summation of subscripts of P and Q is no 

less than 4. In this way, C2 can be expressed 

as 

   (3) 

Notice that the sequence Q, with the same 

method in equation (2), satisfies 

 
Put equation (4) and (5) into equation (3) we 

get 

C2 = P4j(P3&Q0)j(P2&(Q2jQ3))j(P1&Q3) 

(6) 

As for C1, the sum of subscripts of 

sequences P and Q equals 2,3,6,7, then C1 = 

1. So we get equation (7). 

  (7) 

Note that 

 (10) 

In equation (10), P2jP3, P2jP3, and P1jP2, 

P1jP2, construct two Multichannel selection 

constructions. And via the circuit in Fig.6, 

C1 can be calculated time efficiently. 

As for S, it can be easily obtained by 

equation (11), where  denots “XOR”. 

    (11) 

2) Further Optimization: In the last 

subsection, we got two sequences H1-H4 

and I1-I3. Here we extend sequence H1-H4 

by H0 (denotes the fixed “1” in Fig.4) and 

H5 (denotes the fixed “0” ). Do the same for 

sequence I. I0 denotes the fixed “1” and I4 

denotes the fixed “0”. Thus we have 

equation (12). 

 (12) 

In addition, we notice that, when 

subsequences selected from the sequence Q 

or P are given, if their subscripts are 

successive (P1; P2; P3 for example), the 

result of “OR” them up can be easily 

expressed by sequence I or H (P1jP2jP3 

=H1&H4 for example). So Boolean equation 

(12) is generalized as equation (13). “P” in 

equation (13) represents continuous “OR”. 

 
(13) 

 
Fig. 4. Overall (7,3) counter circuit. 

Based on this, equation (10) is simplified to 

equation (14) which can also be calculated 

from the circuit in Fig.6. 

C1 

=(Q0&(P2jP3))j(Q1&(P1jP2))j(Q2&(P2jP3)

) j(Q3&(P1jP2)) 

=(Q0&(H2jH4))j(Q1&(H1jH3))j(Q2&(H2j

H4))j(Q3&(H1jH3))     (14) 
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There is another trick for sequences H and I. 

Because H0-H5 are all in order, this means 

that if Hi = 1(i = 0; 1; 2; 3; 4; 5) then for 

every j < i, Hj = 1 always holds. So is the 

sequence Q. Then we get equation (15). 

Ii = IijIi+j ; (i = 0; 1; 2; 3; j _ 0; i + j _ 4) 

Hi = HijHi+j ; (i = 0; 1; 2; 3; 4; j _ 0; i + j _ 

5) 

(15) 

Note that H0 = I0 = 1 and H5 = I4 = 0 

always holds, we can simplify equation (3) 

as (using a trick:Aj(A&B) = AjB) 

 (16) 

EXACT/APPROXIMATE (4:2) 

COMPRESSORS 

A. Exact (4:2) Compressor 

 
Fig.5. Proposed exact (4:2) compressor. 

A (4:2) compressor has the same logical 

function as Fig.10 shows. To construct a 

high speed (4:2) compressor, we also 

introduce sorting networks. The 4-way 

sorting network, as shown in Fig.2, needs 

three stages to sort four inputs, and we 

observed that the last stage of the 4-SN just 

sorts the two data in the middle, which 

means that the data at the top and the data at 

the bottom are the maximum and the 

minimum of the four data, respectively. We 

redisplayed the first two stages of a 4-SN in 

Fig.5 as “Half Sort”, and the results of the 

“Half Sort” are denoted as A, B, C and D. 

Since A and D are the maximum and 

minimum data, respectively, the sequence 

[A,B, D] is already sorted completely. Then 

the summation of A, B and D can be 

calculated with equation (29). 

s0 = (A&B)jD 

Cout = B (29) 

The summation of s0, Cin and C is 

calculated with a “Full Adder” (as shown in 

Fig.11) which has been modified. Equation 

(30) describes the “Full Adder”. 

h1 = CjCin 

h2 = C&Cin 

Carry = (s0&h1)jh2 

Sum = s0?(h1jh2) : (h1&h2)  (30) 

B. Approximate (4:2) compressors 

We also use the name “Yang1”, “Yang2” to 

represent the approximate (4:2) 

compressors, which have 1 and 2 errors, 

respectively, proposed in [19]. And we name 

the approximate (4:2) compressors proposed 

in [18] that with 1 and 2 errors as “Strollo1” 

and “Strollo2”, respectively. 

 
Fig 6. Proposed approximate (4:2) 

compressor with 1 error 

In Fig 6, we construct an approximate (4:2) 

compressor based on sorting network. D is 

one of the outputs of 4SN, and it is the 

minimum one of the inputs. By simply 

discarding D, the structure is constructed 

and it has the same logical function as that 

“Yang1” and “Strollo1” have. 
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Carry = A&h1 

Sum = h2j(A ^ h2)     (31) 

 
Fig7. Proposed approximate (4:2) 

compressor with 1 error 

To construct a faster approximate (4:2) 

compressor, a sorter is discarded in 4 SN, as 

shown in Fig.7. Although it is uncertain that 

the sequence [A, h1, h2] is sorted 

completely, we assume that the sequence is 

sorted completely. In order to correct the 

deviation introduced by incomplete sorting, 

the output expressions are modified to 

equation (31). 

16_16 bit multiplier: To show the 

performance of the proposed counters, we 

construct 16_16 bit multipliers as 

application platforms. The proposed (31,5) 

counter has poor area efficiency, so we do 

not utilize it in this subsection. The 16_16 

bit multipliers’ architectures are illustrated 

in Fig.14(a) and Fig.14(b) for (7,3) counter 

and (15,4) counter, respectively. 

 Multipliers with the proposed counters has 

better ADP and PDP than other designs, and 

they can also reach lower delay than other 

designs. So, in some high-performance 

cases, it will be very suitable, and it also 

performs well in low-power and area-

efficient cases.  

2) 8_8 bit approximate multiplier: To make 

a compression between the proposed and the 

other exact/approximate (4:2) compressors, 

we construct a 8_8 bit approximate 

multiplier which is proposed 

RESULTS  

 
Fig 7.1 Simulation Result 

COMPRESSION TABLE 

 EXISTING 

SYSTEM 

PROPOSED 

SYSTEM 

AREA 143 124 

DELAY 32.681 ns 21.333 ns 

SPEED 30.59 Mhz 54.43 Mhz 

CONCLUSION AND FUTURE WORK 

In this paper, a new counter design method 

based on sorting network is proposed, and 

we construct (7,3), (15,4) and (31,5) 

counters based on this method. The (7,3) 

counter has 8.1% 27.0% less delay than 

other designs, and also consumes less area 

and power. The (15,4) counter is more 

flexible than existing designs because it 

achieves 14.9%-35.2% less delay when the 

speed is critical, and performs 14.7%-49.0% 

and 41.2%-72.7% better in ADP and PDP 

when the area or power is critical. The 

(31,5) counter, has more than 22.0% shorter 

delay than other existing designs. When they 

are embedded in a 16-bit multiplier, the 

multiplier achieves 31.8% and 32.2% better 

in ADP and PDP in maximum than those 

embedded in other counter designs. 

Exact/approximate (4:2) compressors are 

also proposed based on sorting network. 

And they performs approximately 10.2%-

37.4% better in ADP and 22.3%-48.0% 

better in PDP when they are embedded in an 

8-bit approximate multiplier. 
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