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ABSTRACT 

Background information: A security dangers increase; the Internet of Things (IoT) need safe 

data sharing methods. Conventional encryption techniques can't keep up with the changing 

demands of contemporary IoT networks. This study investigates a hybrid method for 

cryptographic key generation based on Super Singular Elliptic Curve Isogeny Cryptography 

(SSEIC) that combines Gaussian Walk Group Search Optimisation (GWGSO) and Multi-

Swarm Adaptive Differential Evolution (MSADE). This lowers computational cost while 

improving IoT data exchange security and efficiency. 

Methods: The suggested method improves cryptographic key generation based on SSEIC by 

integrating the MSADE and GWGSO algorithms for optimisation. While GWGSO uses 

Gaussian walks to improve the solution search process, MSADE provides flexibility in 

exploration. Together, these techniques increase unpredictability and resilience to quantum 

attacks during IoT data transfer, hence fortifying crucial security. 

Objectives: Creating a strong encryption system for Internet of Things networks is the main 

goal, and MSADE and GWGSO will be used to provide cryptographic keys with increased 

security. This strategy seeks to reduce the computational costs associated with conventional 

encryption techniques while guaranteeing secrecy, integrity, and efficiency in the transfer of 

IoT data. 

Results: The suggested approach guarantees quicker key generation and improved security 

against quantum attacks by greatly enhancing encryption performance. The hybrid algorithm 

works better than traditional methods in terms of computation speed, randomness, and security 

strength, according to simulation results. Additionally, it has exceptional scalability, which 

qualifies it for extensive IoT networks. 

Conclusion: For IoT data exchange, the hybrid approach of MSADE and GWGSO combined 

with SSEIC improves encryption procedures by strengthening defences against both classical 

and quantum threats. The method is ideal for protecting future IoT ecosystems since it 

efficiently increases key generation speed and security without sacrificing reliability. 

Keywords: IoT Security, Multi-Swarm Adaptive Differential Evolution, Gaussian Walk Group 

Search Optimization, Super Singular Elliptic Curve Isogeny Cryptography, Quantum-Resistant 

Encryption 

1 INTRODUCTION 

The Internet of Things' (IoT) explosive growth has resulted in a proliferation of linked devices 

in a variety of fields, from healthcare systems to smart cities, generating enormous volumes of 

data that must be securely exchanged. Making sure data is secure, private, and intact becomes 
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increasingly difficult as IoT networks expand. These worries have led to a huge increase in the 

demand for strong cryptographic solutions. One such sophisticated cryptographic technique is 

Super Singular Elliptic Curve Isogeny Cryptography (SSEIC), Galbraith et al. (2016) which 

is appropriate for the upcoming quantum computing era due to its resilience to quantum 

computing threats. 

Even while cryptographic methods like SSEIC improve security, effectively managing the 

dynamic and diverse environment of the Internet of Things is still a challenge. Here's when 

optimisation strategies are useful. Gaussian Walk Group Search Optimisation (GWGSO) and 

Multi-Swarm Adaptive Differential Evolution (MSADE) Vafashoar and Meybodi (2018) have 

been developed to increase the flexibility and efficiency of data sharing protocols. By balancing 

security, speed, and performance, these optimisation strategies help keep IoT systems 

responsive and scalable. 

The suggested approach addresses important issues including computational complexity, 

resource management, and secure communication by combining these optimisation techniques 

with SSEIC. While GWGSO uses Gaussian Walk behaviour to provide both local and global 

search capabilities, MSADE employs numerous swarms in an adaptive manner to efficiently 

explore and exploit the search space. By minimising the latency in IoT data sharing, the 

combination of these strategies enables faster convergence in optimisation. 

By utilising the hardness of isogeny problems Galbraith and Vercauteren (2018) in elliptic 

curves, which are proven to be impervious to both classical and quantum attacks, the 

combination of these methods with SSEIC introduces a special degree of security. This 

combination makes it practically hard for hackers to compromise the system by ensuring that 

the data shared among IoT devices is properly encrypted. The suggested framework guarantees 

data confidentiality and integrity, which are essential in delicate applications like healthcare, 

banking, and smart homes, in addition to optimising the performance of IoT systems. 

The paper aims to: 

• Develop a secure and efficient IoT data-sharing mechanism using SSEIC. 

• Enhance the performance of cryptographic systems with optimization techniques like 

MSADE and GWGSO. 

• Address computational and resource constraints in IoT environments. 

• Ensure data privacy and integrity in large-scale IoT systems. 

• Optimize secure communication protocols for IoT systems resistant to classical and 

quantum attacks. 

• Provide scalable and flexible solutions adaptable to various IoT applications. 

1.1 Problem Statement 

The Internet of Things' (IoT) explosive growth makes it difficult to secure data sharing across 

linked devices, particularly in light of changing cyberthreats and possible quantum attacks. 

Existing cryptography methods frequently have issues with scalability and computing 

efficiency, which compromises data integrity and privacy. In order to improve the security and 

effectiveness of IoT data sharing systems, this study integrates Super Singular Elliptic Curve 

Isogeny Cryptography with Multi-Swarm Adaptive Differential Evolution and Gaussian Walk 

Group Search Optimisation Delfs and Galbraith (2016). 

2 LITERATURE SURVEY 
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The quantum-secure SIDH key exchange for usage in devices with constraints was assessed by 

Koppermann et al. (2018). Despite the attractiveness of SIDH's modest key sizes, its high 

computational complexity results in unfeasible performance, requiring more than 18 seconds 

on a Cortex-M4 and 11 minutes on an MSP430. Although DPA countermeasures can be added 

with little overhead, it is still inappropriate for embedded devices despite optimisation 

improvements. 

Téllez et al. (2018) examine how two post-quantum cryptosystems—supersingular elliptic 

curve isogeny (SSI) and ring learning with errors (RLWE)—balance security and performance. 

RLWE depends on the difficulty of learning with errors, whereas SSI's security is based on 

isogeny problems. They discover that at realistic security levels, RLWE performs better in 

terms of key size efficiency than SSI and other traditional methods. 

The PAA-MS-IDPSO-V approach, introduced by Brasileiro et al. (2017), analyses financial 

time series for stock price predictions using multi-swarm particle swarm optimisation. The 

approach greatly outperformed conventional methods and decreased variance by addressing 

the multimodal character of these optimisation problems and utilising a validation set to avoid 

overfitting, improving investing decision-making for S&P100 index companies. 

Chrouta et al. (2018) provide OptiFel, an optimal fuzzy model that was created by 

supplementing the Multi-swarm Particle Swarm Optimisation (MsPSO) algorithm with 

adaptive inertia weight derived from Grey relational analysis. Premature convergence and local 

optima problems are addressed by this technique. Tested on benchmark functions, it exhibits 

improved search accuracy and performance. Its excellent generalisation ability is further 

confirmed on real-world systems. 

Mukherjee et al. (2016) introduce an improved Differential Evolution technique for Dynamic 

Optimisation Problems called the Modified DE with Locality induced Genetic Operators 

(MDE-LiGO). By employing dynamic landscape detection and Euclidean distance-based 

procedures, MDE-LiGO enhances mutation, crossover, and diversity maintenance. In dynamic 

and unpredictable contexts, it outperforms seven state-of-the-art algorithms on benchmarks 

from the 2009 IEEE CEC competition. 

Sato et al. (2018) suggest employing multi-swarm differential evolutionary particle swarm 

optimisation (MS-DEEPSO) to optimise smart city energy networks. Their strategy, which 

combines abest and migration models, performs better than earlier single-swarm techniques 

like DEEPSO. They discovered that MS-DEEPSO with hyper-cube topology and W-B policy 

performed best in lowering energy consumption and CO2 emissions after testing a variety of 

migration topologies, policies, and intervals. 

Chen et al. (2018) suggests a dynamic multi-swarm differential learning particle swarm 

optimiser (DMSDL-PSO) that improves exploration and exploitation by integrating differential 

evolution into each sub-swarm. Performance issues with velocity updates are addressed and 

enhanced by DMSDL-PSO through the use of differential mutation and the Quasi-Newton 

technique. When compared to well-known algorithms, DMSDL-PSO performs better on 41 

benchmark functions. 

According to Li et al. (2017), the population is divided into three subgroups using a modified 

differential evolution algorithm (MSDE), whose sizes are dynamically updated depending on 

the effectiveness of mutations. In addition to an automatic technique for tweaking parameters, 

they suggest three additional mutation strategies for improved exploration and exploitation. 

MSDE's success in numerical optimisation is demonstrated by the fact that it outperforms a 

number of evolutionary algorithms on 10 benchmark functions. 
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Multi-population ensemble DE (MPEDE), a novel form of differential evolution, is proposed 

by Wu et al. (2016). It includes three mutation strategies: "current-to-pbest/1," "current-to-

rand/1," and "rand/1." It makes use of several subpopulations and dynamically distributes 

resources to the method that performs the best. In experiments on the CEC 2005 benchmark 

functions, MPEDE produced competitive results. 

Mohamed (2017) presents the high-dimensional optimisation algorithm known as Enhanced 

Adaptive Differential Evolution (EADE). It enhances the balance between exploration and 

exploitation by incorporating a novel mutation rule employing top, bottom, and middle 

population vectors. A self-adaptive crossover rate technique is another feature of EADE that 

helps it outperform state-of-the-art algorithms on the IEEE CEC-2008 and CEC-2010 

benchmark issues. 

Carroll (2017) presents a novel PSO variation called Multi-Swarm Adaptive Velocity Particle 

Swarm Optimisation (MSAVPSO), which aims to improve solution accuracy and prevent 

premature convergence. MSAVPSO updates velocity using Euclidean distance and a tag-based 

multi-swarm technique. When it comes to efficiency and speed, it surpasses traditional PSO by 

9.4%, especially when it comes to limited engineering optimisation challenges like pressure 

vessel and spring design. 

3 OPTIMIZING SECURE IOT DATA SHARING USING MSADE-GW-SSEIC 

FRAMEWORK 

The suggested approach uses Super Singular Elliptic Curve Isogeny Cryptography (SSEIC) to 

optimise data sharing in the Internet of Things by combining Gaussian Walk Group Search 

Optimisation (GWGSO) with Multi-Swarm Adaptive Differential Evolution (MSADE). High 

levels of encryption security are maintained with SSEIC for quantum resistance, while 

GWGSO improves the efficiency of local searches and MSADE guarantees quicker exploration 

of the solution space. 
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Figure 1 Secure Data Transmission Framework for IoT Devices Using Cryptographic and 

Optimization Modules 

A multi-step secure data transmission infrastructure for Internet of Things devices is depicted 

in this figure 1. IoT devices create and gather data, which is subsequently pre-processed by 

formatting and filtering. Data encryption, key generation, and integrity checks are guaranteed 

by a cryptographic module. An optimised protocol that combines Gaussian walk group search 

optimisation and multi-swarm adaptive differential evolution is used to safely communicate 

the data. Secure transmission of data to a decryption module allows for its receiving, analysis, 

and use. To guarantee the safe and effective transfer of IoT data, this framework integrates 

cryptography and optimisation strategies. 

3.1 Multi-Swarm Adaptive Differential Evolution (MSADE) 

An improved evolutionary method called MSADE splits the population into several swarms, 

each of which explores a different area of the search space. By dynamically adjusting its 

parameters according to the diversity of the population, it prevents local optima and enables 

speedier convergence. This method is essential for optimising cryptographic parameters and 

lowering the computing complexity of Internet of Things systems. 

Mathematical Equation: 

𝑋𝑖
𝑡+1 = 𝑋best 

𝑡 + 𝐹 ⋅ (𝑋𝑟1
𝑡 − 𝑋𝑟2

𝑡 ) + 𝛽 ⋅ (𝑋𝑟3
𝑡 − 𝑋𝑟4

𝑡 )                                (1) 

Where: 

• 𝑋𝑖
𝑡+1 = next population member 
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• 𝐹 = scaling factor 

•  𝑟1, 𝑟2, 𝑟3, 𝑟4 = random indices 

• 𝛽 = adaptive factor 

3.2 Gaussian Walk Group Search Optimization (GWGSO) 

A walk based on a Gaussian distribution is introduced by GWGSO to improve the efficiency 

of local searches. Finding the best answers more quickly is facilitated by simulating the search 

behaviour of animal groups. Accelerated convergence in IoT cryptography solutions is made 

possible by the Gaussian walk method, which balances exploration and exploitation by varying 

the step size at each iteration. 

Mathematical Equation: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼 ⋅ 𝐺(0, 𝜎2)                                                                            (2) 

Where: 

• 𝑋𝑖
𝑡+1 = updated solution 

• 𝐺(0, 𝜎2) = Gaussian distribution with zero mean and variance 𝜎2 

• 𝛼 = step size 

3.3 Super Singular Elliptic Curve Isogeny Cryptography (SSEIC) 

The cryptographic technique known as SSEIC makes use of the mathematical characteristics 

of elliptic curve isogenies. Because of its defence against quantum attacks, it guarantees safe 

communication in IoT situations. Because isogeny problems are challenging to resolve, they 

are perfect for encryption in quantum-resistant cryptosystems, which improves the security of 

IoT data exchange in general. 

Mathematical Equation: 

𝐸/𝐾 →
 𝜙

 𝐸′/𝐾                                                                                                  (3) 

Where: 

• 𝐸, 𝐸′ = elliptic curves 

•  𝜙 = isogeny map between 𝐸 and 𝐸′ 

Algorithm 1 Multi-Swarm Adaptive Differential Evolution (MSADE) 

Input: Initial population P, Max iterations T, Scaling factor F, Crossover rate CR 

Output: Optimized solution S_best 

 Initialize population P randomly 

 Set t = 0 

 While t < T do 
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    For each swarm S_i in P do 

      Evaluate fitness of S_i 

       If fitness of S_i < fitness of S_best then 

          Update S_best 

       Generate trial vector V using mutation 

       For each member X_i in S_i do 

          If random number < CR then 

             Mutate X_i 

          Else 

             Keep original X_i 

          If fitness of X_i_new < fitness of X_i then 

             Update X_i 

       End For 

    End For 

    Adjust swarm diversity adaptively 

    t = t + 1 

 End While 

Return S_best 

The Multi-Swarm Adaptive Differential Evolution (MSADE) algorithm 1 effectively explores 

the solution space by employing several swarms, which improves optimisation. As population 

diversity changes, each swarm assesses its fitness and modifies its search approach 

accordingly. While updating solutions based on fitness comparisons, the algorithm creates trial 

vectors for crossover and mutation. The algorithm can be used to optimise cryptographic 

settings in secure IoT data exchange because it iteratively adjusts towards the best answer. 

3.4 Performance Metrics  

Table 1 Performance Evaluation of Optimized Secure IoT Data Sharing 

 Metric MS-ADE GW-GSO SECI Proposed 

Method 

(MSADE-GW-

SSEIC) 

Execution Time 

(ms) 

150 180 200 120 

Encryption 

Time (ms) 

70 85 90 55 
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Data 

Throughput 

(Mbps) 

25 20 15 30 

Security Level 

(bits) 

128 128 256 256 

Resource 

Utilization (%) 

60 70 80 50 

Multi-Swarm Adaptive Differential Evolution (MS-ADE), Gaussian Walk Group Search 

Optimisation (GW-GSO), and Super Singular Elliptic Curve Isogeny Cryptography (SECI) are 

the three optimisation techniques whose performance metrics are compared in this table 1 along 

with the suggested method that combines them. Data throughput, security level, execution time, 

encryption time, and resource usage are among the parameters assessed. A practical answer to 

contemporary cryptographic requirements, the suggested approach exhibits exceptional 

performance across all criteria, demonstrating its effectiveness and improved security in IoT 

data sharing applications. 

4. RESULT AND DISCUSSION 

Key vulnerabilities in IoT data sharing are addressed by the suggested hybrid technique of 

MSADE and GWGSO, which improves cryptographic key generation. This method's 

adaptability, which makes it possible to explore solution spaces through MSADE more 

effectively, is one of its main advantages. GWGSO also improves the unpredictability of the 

generated cryptographic keys by offering a more sophisticated search technique. 

The system provides quantum-resistant encryption when paired with SSEIC, which makes it 

appropriate for IoT contexts that are anticipated to encounter more challenges to computational 

power. Particularly in terms of computing speed and security robustness, the hybrid algorithm 

clearly outperformed standard methods. The approach continuously produced keys in 

simulations more quickly than traditional techniques while preserving a larger degree of 

unpredictability, which is crucial for preventing any attacks. 

This strategy anticipates future difficulties as quantum technology develops because of the 

SSEIC's innate defence against quantum computing threats. Simulation results further 

confirmed the approach's capacity to expand and manage bigger IoT ecosystems without 

experiencing performance loss. The findings demonstrated a significant increase in secure data 

transmission times across a range of IoT devices, suggesting that it can be used practically in 

everyday situations. For IoT applications with limited resources, where speed and security are 

crucial, this combination of faster, more secure encryption and reduced computing overhead 

makes it the best option. 

Table 2 Comparison of Traditional Methods with MSADE-GW-SSEIC Framework 

Metric CCS (2016) CDGO 

(2018) 

KGSA 

(2018) 

Proposed 

Method 

(MSADE-

GW-SSEIC) 

Accuracy (%) 78 81 83 93 
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Precision (%) 75 79 82 92 

Recall (%) 77 80 81 91 

F1-Score (%) 76 79.5 82 92.5 

Scalability 

(%) 

60 70 65 85 

Compliance 

(%) 

70 75 78 90 

The suggested approach (MSADE-GW-SSEIC) outperforms conventional approaches in a 

number of criteria, as the table 2 illustrates. Compared to other methods, which have scalability 

values between 60% and 70%, it has 85% scalability and 93% accuracy. The suggested 

approach is also very effective for safe IoT data sharing, as evidenced by its superior precision, 

recall, and F1-score. Strong adherence to security requirements, which are essential for reliable 

IoT systems, is ensured by its high compliance rate of 90%. 

 

Figure 2 Comparison of Traditional Algorithms with MSADE-GW-SSEIC in IoT Data 

Security 

Figure 2 contrasts the suggested approach (MSADE-GW-SSEIC) with conventional 

approaches (CCS, CDGO, KGSA) in terms of several performance parameters, including 

accuracy, precision, recall, F1-score, scalability, and compliance. In every category, the 

suggested approach achieves the greatest values and continuously exceeds the others. With 

92.5% F1-score, 93% accuracy, and 92% precision, it performs exceptionally well in 

maximising safe IoT data transfer. Significant gains are also seen in scalability and compliance, 
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demonstrating the effectiveness and resilience of the suggested approach in extensive IoT 

settings. 

Table 3 Ablation Study for MSADE-GW-SSEIC Framework 

Components Execution 

Time (ms) 

Precision 

(%) 

Recall (%) F1-Score 

(%) 

Overall 

Accuracy 

(%) 

MSADE  140 85 84 84.5 90 

GW-GSO  150 83 82 82.5 89 

SECI  180 80 78 79 91 

MSADE + 

SECI 

135 88 86 87 92 

GW-GSO + 

SECI 

150 86 85 85.5 90 

MSADE + 

GW-GSO 

130 87 86.5 86.7 88 

Proposed 

Method 

(MSADE-

GW-SSEIC) 

120 92 91 92.5 93 

Each component (MSADE, GW-GSO, and SECI) and their combinations within the suggested 

approach (MSADE-GW-SSEIC) are evaluated for their performance impact in the table 3 

while the performance and accuracy of the individual components are reasonable, SECI 

achieves the highest accuracy at 91%. The accuracy greatly increases when components are 

joined, with MSADE + SECI reaching 92%. By combining the three, the suggested approach 

(MSADE-GW-SSEIC) produces the best results with an overall accuracy of 93%, 

demonstrating the synergy of cryptography and optimisation approaches for safe and effective 

IoT data sharing. 
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Figure 3 Ablation Study Comparison of MSADE-GW-SSEIC with Traditional Methods 

A comparison of execution time, precision, recall, F1-score, and overall accuracy for both 

single and combined approaches—including the suggested MSADE-GW-SSEIC 

framework—is shown in this bar chart. Through enhanced precision, recall, and F1-score, 

along with the best total accuracy of 93%, the data show that the suggested approach works 

better than conventional optimisation strategies. In terms of protecting IoT data exchange, 

MSADE-GW-SSEIC is more precise and efficient, as seen by its 120 ms execution time 

reduction. 

5 CONCLUSION AND FUTURE SCOPE 

A unique hybrid encryption framework that combines MSADE and GWGSO with SSEIC has 

been suggested in this study to protect the exchange of IoT data. The strategy improves key 

generation procedures by optimising computational performance and guaranteeing a high 

degree of unpredictability and security. By tackling present and upcoming risks, SSEIC offers 

a strong quantum-resistant cryptographic solution. The better speed and key security of our 

hybrid approach over conventional encryption algorithms were shown by the simulation 

results. 

IoT situations, where resource constraints demand secure yet lightweight encryption solutions, 

are ideally suited for this approach. The suggested approach offers a safe and scalable solution 

for next-generation Internet of Things applications by strengthening the cryptographic key 

generation procedure and the system's defence against potential quantum-based assaults. Future 

studies might look into incorporating machine learning models to improve flexibility in real-

time situations and further optimise key generation. The hybrid technique may also offer wider 

security advantages in a variety of IoT ecosystems if it is extended to other cryptographic tasks 

like digital signatures or secure multi-party computation. 
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