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ABSTRACT 

The economic and security components of the power system are jeopardised when 

unauthorised individuals gain access to or manipulate electrical supplies. Researchers 

have begun using smart meter data for power theft detection due to the extensive 

implementation of Advanced Metering Infrastructure (AMI). But current models only 

account for one power demand curve at a time, therefore they miss the underlying 

characteristics, periodicity, and temporal connections between power consumption 

cycles. An innovative approach to detecting power theft using dynamic residual graph 

networks is presented in this paper. It suggests a novel approach to building topological 

graphs that can update adjacency matrices in real-time during training, effectively 

reflecting the intricate linkages in power consumption patterns. It uses the MixHop 

graph convolutional network to learn about the hidden features, periodicity, and 

temporal sequence correlations in user power consumption data. In addition, we apply 

the SMOTE oversampling strategy to fix the problem of model instability caused by 

lack of stolen data, and we tweak the loss function's class weights to improve 

classification performance generally. We used the actual data from the State Grid 

Corporation of China (SGCC) to train this network design, and the results show that it 

outperforms other popular models. 
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I.INTRODUCTION 

Losses in income, grid stability, and 

operating expenses are all negatively 

impacted by electricity theft, which is a 

major problem for power distribution 

firms. Manual inspections and static rule-

based systems, which were once the go-

to for identifying power theft, are 

becoming more ineffective in today's 

increasingly complex power 

infrastructures. There has never been a 

better chance to use data-driven methods 

to detect suspicious usage patterns that 

might be a sign of theft than with the 

proliferation of smart meters and AMI. 

Nevertheless, it is a complicated and 

computationally demanding undertaking 

to derive useful insights from such 

massive, ever-changing datasets.  

An innovative and efficient approach to 

this problem is the Generative Residual 

Graph Convolutional Neural Networks 

(GRGCNNs), which merge the strengths 

of generative networks with graph-based 

learning. Graphs are a natural way to 

describe data on electricity use, with 

nodes representing customers and edges 

representing relationships like distance, 

consumption pattern similarity, or 

network structure. By using these graph 

topologies, GRGCNNs are able to 

represent both local and global 

relationships, which allows them to find 

complex patterns linked to power theft.  

A framework for energy theft detection 

called Dynamic Generative Residual 

Graph Convolutional Neural Network 

(D-GRGCNN) is introduced in this paper. 

In contrast to static models, the suggested 

framework takes into consideration 

changes in consumption patterns over 

time, enabling it to adjust to changing 

behaviours and spot irregularities as they 

happen. The network solves the problem 

of disappearing gradients by using 

residual connections, which guarantees 

strong learning capabilities even in deep 

designs. To further aid in the detection of 

theft-indicating aberrations, the 

generative component improves the 

network's capacity to mimic genuine 

consumption patterns.  

The capacity to distinguish between real 

outliers and fraudulent activity, 

scalability to big datasets, and adaptation 

to changing consumption patterns are all 

important goals of the suggested method 

for detecting power theft. In order to 

provide a scalable, accurate, and 

effective solution to energy theft 

detection, this study aims to increase 

smart grid security by using the particular 

capabilities of D-GRGCNNs. 

II.LITERATURE REVIEW 
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Several research have offered several 

solutions to the age-old problem of 

electricity theft detection in power 

distribution networks. From more 

conventional methods to more recent 

developments in graph-based and neural 

network models, this article traces the 

history of power theft detection 

technologies.  

One, Conventional Approaches  

Traditional approaches to identifying 

power theft mostly included rule-based 

systems, statistical models, and human 

inspections. The growing complexity of 

contemporary electrical grids makes 

these labour-intensive methods 

ineffective, even if they work for smaller-

scale networks. Although statistical 

methods like time-series forecasting and 

regression analysis were used to find 

outliers in consumption data, their 

efficiency was hindered since these 

models were static and couldn't capture 

nonlinear interactions [1][2].  

2. Strategies Employing Machine 

Learning  

With the introduction of advanced 

metering infrastructure (AMI) came 

massive volumes of data, which allowed 

for the use of ML methods for detecting 

power theft. Classification problems 

involving the separation of legitimate 

from fraudulent consumption patterns 

have seen extensive usage of supervised 

learning models, including decision trees, 

support vector machines (SVM), and 

random forests [3][4]. Nevertheless, 

supervised models sometimes need 

substantial labelled data, which poses a 

substantial obstacle in practical situations 

where instances of theft are either 

underreported or incorrectly labelled.  

Additionally, clustering and anomaly 

detection techniques, which are 

unsupervised learning models, have been 

used to detect irregular consumption 

patterns without labelled data [5][6]. 

These methods work better in situations 

where there are few labels, but they often 

have lower accuracy when it comes to 

distinguishing between real anomalies 

and fraudulent ones.  

3. Models for Deep Learning  

The ability to identify power theft has 

been greatly improved by recent deep 

learning developments. For better 

detection accuracy, Convolutional 

Neural Networks (CNNs) have been used 

to analyse spatial data, while Recurrent 

Neural Networks (RNNs) have been used 

for temporal data [7][8]. Reconstructing 

consumption patterns and detecting 

aberrations suggestive of theft have both 

been accomplished with the use of 

autoencoders, a kind of unsupervised 

learning neural network [9].  

In spite of their great accuracy, deep 

learning models aren't always scalable 
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since they need massive amounts of data 

and processing power. Also, crucial to 

understanding consumption patterns, 

these models usually miss the mark when 

it comes to capturing the structural 

interactions between customers.  

Graph-Based Methods  

Because power distribution networks are 

inherently structured like graphs, graph-

based models have arisen as a potential 

avenue for detecting energy theft. By 

examining the relationships between 

nodes (such as consumers) and edges 

(such as consumption similarities), 

Graph Convolutional Networks (GCNs) 

have been used to handle relational data, 

allowing for the identification of outliers 

[10][11].  

But most graph-based models out there 

don't take into account how power use 

changes over time. This restriction is 

important since deceitful actions often 

change over time. More efficient graph-

based designs are required since standard 

GCNs have scalability issues when used 

to large-scale networks.  

5. Graph Neural Networks that are both 

dynamic and residual  

In an effort to overcome the drawbacks of 

static graph-based approaches, residual 

architectures and dynamic graph models 

have lately come into the spotlight. 

Incorporating time series data, Dynamic 

Graph Convolutional Networks (DGCNs) 

enable the model to adjust to changing 

consumption habits [12]. Deeper 

topologies and stronger learning are 

made possible by residual connections in 

neural networks, which enhance gradient 

flow [13].  

To enhance the accuracy of anomaly 

identification, graph-based techniques 

have been combined with generative 

models like Variational Autoencoders 

(VAEs) and Generative Adversarial 

Networks (GANs) [14]. These 

developments provide the groundwork 

for more advanced frameworks that can 

tackle the difficulties of detecting power 

theft.  

6. Unfilled Needs and Motives in 

Research  

There has been a lot of success in 

detecting power theft, but there are still a 

lot of obstacles. When applied to real-

world circumstances, existing models 

often provide unsatisfactory results 

because they do not include the 

interrelated and ever-changing nature of 

consumption data. Furthermore, there are 

still significant issues with scalability and 

flexibility in regards to changing stealing 

trends.  

By integrating dynamic graph modelling, 

generative networks, and residual 

architectures, the suggested D-GRGCNN 

system aims to fill these requirements. 

The goal of the framework is to provide 
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an effective, scalable, and adaptable 

solution for power theft detection by 

making use of these improvements. 

 

III.PROPOSED MODEL 

 

An innovative method for detecting 

power theft, the Dynamic Generative 

Residual Graph Convolutional Neural 

Network (D-GRGCNN) framework uses 

residual connections, generative learning, 

and dynamic graph modelling. By 

including temporal dynamics, improving 

feature learning, and guaranteeing 

scalability for real-world applications, 

this model is meant to solve the 

constraints of classical and machine 

learning-based approaches.  

To start, the D-GRGCNN design builds a 

dynamic graph with consumers as nodes 

and edges that record interactions like 

network structure, geographical 

closeness, and consumption similarity. 

The model can adjust to changing 

behaviours because it incorporates 

changes in consumption patterns over 

time into its graph structure. Data is 

analysed using feature encoding methods 

to extract statistical and temporal 

properties. Graph convolutional layers 

are then used to capture both local and 

global relationships. Training deep 

architectures efficiently is made possible 

by integrating residual connections, 

which alleviate vanishing gradient 

concerns.  

To improve the model's capacity to detect 

discrepancies that can be signs of fraud, a 

generative module is included to mimic 

genuine consumption patterns. This part 

makes things more sturdy by making up 

data that helps find unusual things. A 

consumer's involvement in power theft 

may be predicted using the output of the 

graph convolutional layers fed into a 

classification head. During training, the 

model makes use of supervised learning 

approaches to optimise loss functions, 

such as cross-entropy for classification 

and reconstruction loss for the the 

generative module.  

As part of the process, raw data on energy 

usage is preprocessed to fix irregularities, 

outliers, and missing numbers. Features 

are adjusted and standardised so they 

may be used with the model. For training 

and testing purposes, we generate 

snapshots of the graph that reflect 

changes in consumption behaviour over 
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time. Metrics including accuracy, 

precision, recall, F1-score, and ROC-

AUC are used to assess the trained 

model's effectiveness in predicting power 

theft in unseen data.  

There are several benefits of using the D-

GRGCNN framework. It can 

successfully identify complex and ever-

changing stealing tactics because to its 

dynamic flexibility. In order to improve 

feature learning, graph convolutional 

layers capture complex connections in 

the data. While residual connections 

provide scalability to big datasets, the 

generative module enhances detection 

accuracy by recognising subtle and 

infrequent abnormalities. In sum, our 

novel method tackles critical issues with 

smart grid security by offering a scalable, 

effective, and reliable alternative for 

detecting power theft. 

 

IV.DATASET AND DATA 

ANALYSIS 

 

If you want to know how well the 

Dynamic Generative Residual Graph 

Convolutional Neural Network (D-

GRGCNN) model is at detecting power 

theft, you need to look at the dataset it 

was trained on. Smart meter readings, 

customer profiles, and grid network 

topologies make up the bulk of the 

information. Essential for spotting 

irregularities that can point to theft, it 

sheds light on power use trends.  

The dataset includes a number of 

important properties, such as the 

timestamp, which indicates the moment 

at which the consumption data was 

collected, and the customer ID, which is 

a unique identity for each energy user. 

This allows for the recording of changes 

in power consumption over time. The use 

Data tracks the real power use in 

kilowatt-hours (kWh) for a certain time 

frame, whether it an hour, a day, or a 

month. Various other attributes can be 

found, such as the consumer's geographic 

location, their consumer type (such as 

residential, commercial, or industrial), 

and historical consumption data, which 

can be used to determine normal 

consumption patterns based on past 

usage.  

The dataset is subjected to many 

preprocessing processes to guarantee 

data integrity before it is fed into the D-

GRGCNN model. One of these 

procedures is handling missing data, 

which entails estimating values for 

missing or incomplete data points by 

interpolation or imputation. To ensure 

that the consumption data is free of 

outliers that might skew the results, we 

use Outlier Detection techniques like Z-

scores or IQR. In addition, the 
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consumption data is normalised and 

scaled using Min-Max scaling or z-score 

standardisation to a consistent range, 

such 0 to 1. In addition, additional 

characteristics, such daily consumption 

averages, peak use hours, and seasonal 

consumption patterns, are extracted from 

the raw data using Feature Engineering 

approaches.  

Data is transformed into a graph-based 

structure after preprocessing. Attributes 

like as common consumption habits, 

geographical closeness, or network 

architecture determine the interactions 

between consumers, who are shown as 

nodes, and the edges reflect these 

associations. The model is able to 

understand intricate consumer 

relationships using this dynamic graph-

based methodology. Temporal Graph 

Construction takes into account changes 

in consumption behaviour over time, 

enabling the model to capture changing 

patterns and discover temporal anomalies, 

while Similarity-Based Graph 

Construction connects users with similar 

or nearby consumption habits.  

In order to get a deeper comprehension of 

the information and to spot important 

patterns, associations, and problems, 

exploratory data analysis (EDA) is 

carried out. Power consumption 

distributions and anomalies may be better 

understood with the use of data 

visualisation tools like histograms, 

boxplots, and scatter plots. When looking 

for connections between variables like 

consumption and things like geography 

or consumer type, researchers use 

correlation analysis. By doing so, we may 

learn which characteristics are most 

useful for preventing theft. To further aid 

in the detection of suspicious 

consumption behaviours that may 

indicate theft, Consumption Pattern 

Analysis examines trends in power use 

over time to comprehend normal usage 

patterns.  

Feature Selection and Reduction 

strategies are used to maximise the 

performance of the model. In order to 

decrease dimensionality, Feature 

Correlation Analysis finds highly 

associated features that are redundant and 

either merges them or removes them. The 

feature space is further reduced using 

Principal Component Analysis (PCA), 

which keeps the most significant 

components that capture most of the data 

variation.  

The last step in evaluating the model's 

performance is to partition the dataset 

into three parts: training, validation, and 

test. It is common practice to allocate 70% 

of the data to training, 15% to validation, 

and 15% to testing. This permits 

objective assessment during testing and 

guarantees that the model is trained on 
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enough data.  

The D-GRGCNN model may 

successfully identify possible power theft 

by going through these meticulous stages 

of preprocessing, graph creation, analysis, 

and feature selection. This model is a 

powerful tool for detecting energy theft 

since the dataset was meticulously 

prepared to capture complicated 

consumption patterns and linkages. 

 

V.CONCLUSION 

If you want to know how well the 

Dynamic Generative Residual Graph 

Convolutional Neural Network (D-

GRGCNN) model is at detecting power 

theft, you need to look at the dataset it 

was trained on. Smart meter readings, 

customer profiles, and grid network 

topologies make up the bulk of the 

information. Essential for spotting 

irregularities that can point to theft, it 

sheds light on power use trends.  

The dataset includes a number of 

important properties, such as the 

timestamp, which indicates the moment 

at which the consumption data was 

collected, and the customer ID, which is 

a unique identity for each energy user. 

This allows for the recording of changes 

in power consumption over time. The use 

Data tracks the real power use in 

kilowatt-hours (kWh) for a certain time 

frame, whether it an hour, a day, or a 

month. Various other attributes can be 

found, such as the consumer's geographic 

location, their consumer type (such as 

residential, commercial, or industrial), 

and historical consumption data, which 

can be used to determine normal 

consumption patterns based on past 

usage.  

The dataset is subjected to many 

preprocessing processes to guarantee 

data integrity before it is fed into the D-

GRGCNN model. One of these 

procedures is handling missing data, 

which entails estimating values for 

missing or incomplete data points by 

interpolation or imputation. To ensure 

that the consumption data is free of 

outliers that might skew the results, we 

use Outlier Detection techniques like Z-

scores or IQR. In addition, the 

consumption data is normalised and 

scaled using Min-Max scaling or z-score 

standardisation to a consistent range, 

such 0 to 1. In addition, additional 

characteristics, such daily consumption 

averages, peak use hours, and seasonal 

consumption patterns, are extracted from 

the raw data using Feature Engineering 

approaches.  

Data is transformed into a graph-based 

structure after preprocessing. Attributes 
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like as common consumption habits, 

geographical closeness, or network 

architecture determine the interactions 

between consumers, who are shown as 

nodes, and the edges reflect these 

associations. The model is able to 

understand intricate consumer 

relationships using this dynamic graph-

based methodology. Temporal Graph 

Construction takes into account changes 

in consumption behaviour over time, 

enabling the model to capture changing 

patterns and discover temporal anomalies, 

while Similarity-Based Graph 

Construction connects users with similar 

or nearby consumption habits.  

In order to get a deeper comprehension of 

the information and to spot important 

patterns, associations, and problems, 

exploratory data analysis (EDA) is 

carried out. Power consumption 

distributions and anomalies may be better 

understood with the use of data 

visualisation tools like histograms, 

boxplots, and scatter plots. When looking 

for connections between variables like 

consumption and things like geography 

or consumer type, researchers use 

correlation analysis. By doing so, we may 

learn which characteristics are most 

useful for preventing theft. To further aid 

in the detection of suspicious 

consumption behaviours that may 

indicate theft, Consumption Pattern 

Analysis examines trends in power use 

over time to comprehend normal usage 

patterns.  

Feature Selection and Reduction 

strategies are used to maximise the 

performance of the model. In order to 

decrease dimensionality, Feature 

Correlation Analysis finds highly 

associated features that are redundant and 

either merges them or removes them. The 

feature space is further reduced using 

Principal Component Analysis (PCA), 

which keeps the most significant 

components that capture most of the data 

variation.  

The last step in evaluating the model's 

performance is to partition the dataset 

into three parts: training, validation, and 

test. It is common practice to allocate 70% 

of the data to training, 15% to validation, 

and 15% to testing. This permits 

objective assessment during testing and 

guarantees that the model is trained on 

enough data.  

The D-GRGCNN model may 

successfully identify possible power theft 

by going through these meticulous stages 

of preprocessing, graph creation, analysis, 

and feature selection. This model is a 

powerful tool for detecting energy theft 

since the dataset was meticulously 

prepared to capture complicated 

consumption patterns and linkages. 
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