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ABSTRACT 

When it comes to explainability, AI applications in SAF often encounter problems, 

which prevent farmers from making full use of their potential. This research fills that 

need by suggesting a paradigm that combines PdM with eXplainable Artificial 

Intelligence (XAI). The data, model, result, and end-user aspects are the focus of the 

model's predicted insights and explanations. By changing the way these technologies 

are understood and used, this method signifies a sea change in agricultural AI. There 

are clear performance gains with the suggested model compared to previous methods. 

Classifiers eXtreme Gradient Boosting (XGBoost) and Long-Short-Term Memory 

(LSTM) both improve accuracy by 5.81% and 7.09%, respectively, while XGBoost 

also improves accuracy by 10.66% and ROC-AUC by 4.29%. Based on these findings, 

it seems that the model has the potential to improve maintenance prediction in practical 

agricultural contexts. In the context of PdM for SAF, this research also provides helpful 

insights on data purity, local and global explanations, and counterfactual possibilities. 

The work contributes to the advancement of AI applications in agriculture by 

highlighting the importance of explainability in addition to standard performance 

indicators. As an added bonus, it promotes further study into topics like HITL systems 

and multi-modal data integration, both of which have the potential to enhance AI 

performance while tackling ethical concerns like FAT in agricultural AI. 
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I.INTRODUCTION 

Artificial intelligence (AI) has the ability 

to optimise operations, improve resource 

management, and enhance production in 

Smart Agricultural Facilities (SAF), 

which might lead to a revolution in the 

agricultural business. In this regard, one 

of the most encouraging uses of AI is in 

predictive maintenance (PdM), which 

allows for the early diagnosis of 

equipment faults and the subsequent 

reduction of maintenance costs and 

downtime. Nevertheless, a major 

obstacle, the lack of explainability, often 

prevents AI-based PdM systems from 

being widely used in agriculture, despite 

their efficiency. Because they may lack 

in-depth technical understanding, 

farmers and operators have a hard time 

trusting and making good use of AI 

systems because they can't comprehend 

how these systems make decisions.  

An important new area of study, 

eXplainable Artificial Intelligence (XAI) 

seeks to solve this problem by making AI 

models easier to understand and work 

with. The ability to explain anything to 

users is crucial in predictive maintenance 

since it clarifies why specific  

 

they are provided with maintenance 

action recommendations that empower 

them to make educated choices. 

Specifically for PdM in Smart 

Agricultural Facilities, this paper 

presents an explainable AI model that 

combines explanations with predictive 

insights. Ensuring that stakeholders can 

appreciate the logic behind AI-driven 

predictions, the model delivers clarity 

across four critical dimensions: data, 

model, result, and end-user.  

Bridging the gap between complicated 

AI algorithms and the practical demands 

of farmers, this concept intends to boost 

user trust and engagement by integrating 

explainability with predictive 

maintenance. The research shows that 

this approach enhances predictive 

performance, providing quantifiable 

gains in accuracy, F1 score, and other 

assessment criteria, while also making AI 

models more interpretable. Additionally, 

the study emphasises the significance of 

integrating ethical factors, such FAT 

(Fairness, Accountability, and 

Transparency), into the use of AI in 

farming.  

This paper continues by detailing the 

explainable AI model's development and 

deployment, comparing its results to 

those of other methods, and concluding 

with an examination of potential future 

work towards improving AI-based 
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predictive maintenance in SAFs through 

the integration of multi-modal data and 

Human-in-the-Loop (HITL) systems. 

Our goal in doing this study is to make AI 

more widely used in farming by making 

sure that farmers can rely on these 

technologies and that they are easy to use. 

 

II.LITERATURE REVIEW 

In order to analyse eXplainable Artificial 

Intelligence (XAI) models—a subset of 

sophisticated AI-driven Predictive 

Maintenance (PdM) techniques—this 

research reviewed the literature 

extensively. We set out to determine if 

XAI might improve maintenance 

methods by shedding light on model 

decision-making with more precision. In 

order to provide a thorough picture of 

where things are and where they're 

headed in terms of integrating XAI into 

agricultural PdM systems, this study 

sought to emphasise the benefits, 

drawbacks, and practical use of different 

XAI techniques in PdM. 

A. Predictive Maintenance 

Approaches 

First, prognostics; second, diagnostics; 

and third, anomaly detection were the 

three main PdM methods uncovered by 

the evaluation [21]. While prognostics try 

to foretell how well a system will do in 

the future, anomaly detection looks for 

out-of-the-ordinary patterns in data. 

Performance analysis is the basis for 

diagnostics, which seek to uncover 

present difficulties. Eleven investigations 

centred on prognostics [30, [31], [32], 

[33], [34], [35], [36], [37], [38], [39], [40], 

three on anomaly detection [41, [42], [43], 

and two on combined prognostics and 

diagnostics [40], [44] (among the 

research examined). An important 

omission in the current research is that no 

study focused only on diagnosis. To 

improve the overall efficiency and 

resilience of PdM systems in Smart 

Agricultural Facilities (SAF), future 

research should investigate how 

integrating anomaly detection with 

prognostics might enhance diagnostic 

capabilities. 

 

B. Deep Learning and Machine 

Learning in Predictive Maintenance 

Astonishingly, methods like Long-Short-

Term Memory (LSTM) networks and 

Recurrent Neural Networks (RNNs) 

achieved an accuracy of 90.07% when 

used to prognostics [33]. More 

sophisticated models, such as 

Bidirectional Recurrent Neural Networks 

(Bi-RNNs) and Long Short-Term 

Memory (LSTMs), achieved an 
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unprecedented 96.15% accuracy in 

forecasting Remaining Useful Life (RUL) 

[30]. Anomaly detection tasks have been 

very fruitful for LSTMs, especially when 

combined with One-Class Support 

Vector Machines (OC-SVM) to 

drastically cut down on false alarms [38]. 

Unfortunately, OC-SVMs have a hard 

time handling supervised difficulties and 

may not work in every situation.  

Using AutoML, another research that 

used Random Forest (RF) for prognostics 

showed how versatile it is, especially 

when it comes to component-level 

analysis [32], [36]. Even while AutoML 

has made machine learning accessible to 

more people by automating model 

selection, optimising individual models 

for specific applications is still 

challenging due to its generalist approach 

[45]. The field of prognostics, and the 

industrial sector in particular, found 

success using Ensemble Learning (EL) 

approaches [36]. Alternatives to PdM 

exist, and they aren't as complicated, such 

as Balanced K-Star, Multi-Layer 

Perceptron (MLP), Extreme Learning 

Machine (ELM), and Transfer Learning 

(TL). Another area that has been 

investigated for possible predictive 

maintenance applications is Deep 

Convolutional Autoencoders [34], [35], 

[40], [46]. The diagnostic potential of 

PdM has not been well investigated, 

however what little research there is 

indicates that this is an area that need 

further investigation [40]. 

C. Explainable Artificial Intelligence 

Complex models have proliferated in 

sectors including healthcare, banking, 

and agriculture as a result of the fast 

developing domains of deep learning 

(DL) and machine learning (ML). There 

are serious worries about the models' 

openness and interpretability due to the 

complexity that obscures their decision-

making processes [23]. This haziness has 

prompted the search for explainable AI 

(XAI), an idea that transcends basic 

transparency to make DL and ML model 

decision-making comprehensible to 

humans and machines alike. To build 

confidence in AI systems, it is important 

to make their inner workings as 

transparent as possible. This will allow 

users to understand how choices are 

made and will aid in explainability. The 

need for explainability is multi-faceted, 

yet it is essential for improving the 

trustworthiness and comprehension of 

DL models.  

1) Explainability Factors  

According to a literature search, there are 

four main aspects of explainability: data, 

model, result, and end-user. Problems 

and opportunities with the data used by 
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AI algorithms are the emphasis of the 

data dimension [22]. Further study on the 

data capabilities in predictive 

maintenance for Smart Agricultural 

Facilities (SAF) is needed, since many 

studies did not evaluate whether the data 

was enough to provide the insights 

sought. This highlights the relevance of 

this topic. Examining the impact of input 

data on model predictions is the 

responsibility of the model dimension 

[22]. A common source of bias is the 

assumption of feature independence. 

There were a few of research that looked 

at both the model and outcome aspects 

[30, [31], [32], [36], [39], but the 

majority didn't. A lack of study into the 

logic underlying individual AI model 

predictions is shown by the fact that only 

two studies[34,37] focused on result 

explainability. Closing this gap might 

improve AI systems' decision-making 

and transparency. Research that makes 

AI systems more accessible to a larger 

audience is needed, since the end-user 

dimension, which modifies explanations 

for non-technical users [47], was mostly 

ignored in the literature.  

2) Ways to Make Things Easy to 

Understand  

After analysing all of the research, six 

main schools of thought on explainability 

stood out: (1) local explainability, (2) 

global explainability, (3) model-specific, 

(4) model-agnostic, (5) model-centric, 

and (6) data-centric. Both local and 

global explainability are important, 

although the former seeks to shed light on 

specific predictions and the latter on the 

model's general behaviour. Despite the 

fact that two studies investigated both 

local and global explainability, there is a 

notable lack of research that just 

addresses global explainability [33], [41]. 

On its own, local explainability was the 

focus of thirteen investigations [30, [31], 

[32], [34], [35], [36], [37], [38], [39], [40], 

[42], [43], [44].  

While model-agnostic techniques are 

applicable to several kinds of AI models, 

model-specific approaches are 

customised to specific models. While 

three research concentrated on model-

specific strategies, ten employed model-

agnostic approaches [30, [31], [32], [34], 

[36], [40], [42], [43], [44]. No more than 

two studies have ever used a hybrid 

strategy [39], [41]. techniques that focus 

on models examine the input-output 

linkages inside models, while data-

centric techniques place an emphasis on 

data quality and relevance [47]. There 

has to be more investigation into data-

centric tactics, because all of the studies 

in the study relied on model-centric 

techniques. 



96 
 

D. Explainable Artificial Intelligence 

for Predictive Maintenance 

The capacity of SHapley Additive 

exPlanations (SHAP) to elucidate the 

effect of characteristics on predictions 

has made it stand out among the XAI 

methods used for predictive maintenance, 

especially in the areas of false alarm 

reduction [38] and diagnostic 

interpretation improvement [40], [44]. 

Although SHAP has many practical uses, 

its complexity often prevents it from 

being widely used. Anomaly detection in 

transportation systems is one area where 

Local Interpretable Model-agnostic 

Explanations (LIME) have proven useful 

in providing localised explanations for 

predictions [41]. While LIME does a 

great job of breaking down specific 

predictions, it doesn't do a very good job 

of describing the overall model since it 

just looks at local reasons.  

In-depth understanding of the factors that 

impact predictions is provided by Layer-

wise Relevance Propagation (LRP), 

which is often used in deep learning 

models [33]. However, LRP is rather 

model-specific, even if it has proven 

beneficial in several contexts. Each of the 

three methods—LIME, SHAP, and 

ELI5—was shown to have different 

levels of efficiency and feature 

attribution [39]. ELI5 offered more 

understandable explanations, but it was 

not flexible enough to operate with other 

models, in contrast to LIME, which was 

determined to be efficient. One 

prominent strategy for increasing the 

generalisability of AI systems, 

particularly among those without 

specialised training, is the use of 

Counterfactual Explanations (CFE), 

which focus on creating "what-if" 

scenarios [34], [36]. 

III.SYSTEM ARCHITECTURE  

 

 

Efficient data flow, trustworthy 

predictive capabilities, and transparent 

insights for stakeholders are key 

components of the proposed Explainable 

Artificial Intelligence (XAI) paradigm 

for Predictive Maintenance (PdM) in 

Smart Agricultural Facilities (SAF). 

Each of the many levels that make up this 

architecture—artificial intelligence (AI), 

data processing, and human interaction—
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contributes to the system's overall 

transparency and usefulness. 

IV.METHODOLOGY 

Data Collection Layer 

Collecting data in real-time from the 

agricultural facility's many sources is the 

job of the Data Collection Layer. Factors 

including soil moisture, temperature, and 

humidity as well as data collected by 

equipment health sensors are all part of 

this Internet of Things (IoT) data set. 

Essential data for predictive maintenance 

activities is provided by these sensors, 

which continually monitor vital facility 

conditions. To reduce latency and ensure 

that only relevant data is delivered for 

further analysis, edge devices analyse the 

data before transmitting it to the cloud. 

To further enhance the predictions, the 

system also incorporates data from other 

sources, such weather forecasts and 

maintenance records from the past. 

Data Preprocessing Layer 

The Data Preprocessing Layer is 

responsible for cleaning, normalising, 

and extracting features from gathered 

data. Predictive models are vulnerable to 

noise, missing values, and errors in raw 

data. In order to address these challenges, 

this layer standardises data units, fills in 

missing values, and extracts important 

characteristics, such as patterns that 

indicate equipment wear or possible 

failures. Machine learning models are 

trained using preprocessed data to 

guarantee high-quality input for accurate 

predictions. 

Predictive Maintenance Model Layer 

In order to anticipate possible faults and 

plan maintenance, the system relies on 

the Predictive Maintenance Model Layer, 

which applies machine learning and deep 

learning techniques. This layer makes use 

of state-of-the-art models such as LSTM 

networks for sensor data time-series 

analysis and XGBoost for feature-based 

predictions. The system is able to 

anticipate mechanical breakdowns, make 

suggestions for maintenance tasks, and 

calculate the remaining useful life (RUL). 

Within this layer, anomaly detection 

algorithms aid in the identification of out-

of-the-ordinary patterns that may suggest 

impending breakdown or inefficiency. 

Explainability Layer 

The predictive maintenance models are 

made clear and easy to comprehend via 

the Explainability Layer. Layers like 

SHAP (SHapley Additive exPlanations), 

LIME (Local Interpretable Model-

agnostic Explanations), and CFE 
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(Counterfactual Explanations) give light 

on the model's prediction process. To 

illustrate the point, SHAP details the 

factors that had the greatest impact on the 

failure prediction, such as environmental 

factors or machine performance 

measurements. While CFE provides 

"what-if" scenarios for users to 

investigate potential outcomes, LIME 

aids in comprehending specific 

projections. This layer guarantees that the 

AI system's predictions are 

understandable and trustworthy for 

people with and without technical 

backgrounds. 

Decision Support Layer 

The Decision Support Layer is the point 

of contact between the system and its end 

users. This layer offers practical insights, 

such maintenance warnings and 

suggestions, based on the AI forecasts 

and their explanations. In the case of 

impending maintenance requirements, 

for instance, customers may get warnings 

based on prediction models and the logic 

behind them. In addition, the system 

gives precise maintenance suggestions 

that include what has to be done and 

when to do it in order to minimise the 

likelihood of failure. Furthermore, the 

layer has a feedback loop that allows 

users to provide insights that might 

gradually enhance the model's accuracy. 

User Interface Layer 

Interacting with the predictive 

maintenance system is made easy and 

straightforward with the help of the User 

Interface (UI) Layer. In a graphical user 

interface (GUI), dashboards provide data 

from sensors in real time, insights from 

predictive analytics, and suggestions for 

preventative maintenance. Users may 

also get explanations of specific forecasts, 

examine the significance of features, and 

investigate model predictions using the 

interactive capabilities provided by these 

dashboards. Stakeholders may access 

vital information from any location in the 

building thanks to the system's 

architecture that works across PCs, 

tablets, and mobile devices. 

V.CONCLUSION 

The model for Predictive Maintenance 

(PdM) in Smart Agricultural Facilities 

(SAF) using Explainable Artificial 

Intelligence (XAI) offers a new and 

strong way to deal with the problems that 

contemporary farming is having. This 

approach guarantees openness and 

confidence in AI-driven judgements 

while also accurately predicting future 

failures and maintenance requirements 
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using a combination of sophisticated 

machine learning algorithms and 

explainability methodologies. The 

system's decisions are made accessible 

and understandable to non-expert users 

through the integration of technologies 

like LSTM networks and XGBoost, 

which provide precise predictions of 

RUL and anomaly detection. SHAP, 

LIME, and Counterfactual Explanations 

(CFE) are examples of explainability 

methods.  

Integrating the system into agricultural 

facilities is a breeze because to its 

architecture, which can manage real-time 

data collecting, preprocessing, and 

predictive modelling. This boosts 

operational efficiency and minimises 

downtime. Timely forecasts and 

maintenance notifications are also 

provided via the Cloud/Edge Computing 

paradigm, which guarantees scalability 

and low-latency processing. 

Stakeholders are able to engage with the 

system and act upon insights produced by 

AI more easily via the User Interface 

Layer, which ultimately improves 

decision-making.  

By proving how crucial explainability is 

for AI systems, this effort has a 

substantial impact on agricultural AI. It 

paves the door for more sustainable, 

efficient, and open agricultural 

operations by promoting data-driven 

maintenance methods in SAF. Additional 

capabilities of the system may be 

investigated in future studies by 

integrating data from other modalities, 

improving explainability methodologies, 

and enhancing decision-making using 

Human-in-the-Loop (HITL) systems. 

This technique revolutionises AI 

applications in agriculture by tackling 

important challenges like Fairness, 

Accountability, and Transparency (FAT). 
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