

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1403

Cloud Raid Detecting Distributed Concurrency

Bugs via Log Mining and Enhancement

 1 P.SRINIVASA REDDY, 2 MADIREDDY LAKSHMI KIRAN REDDY

1(Associate Professor), MCA, S.V.K.P & Dr K.S. Raju Arts & Science College, Penugonda

 W.G. District , Andhra Pradesh, psreddy1036@gmail.com

 PG, scholar, S.V.K.P & Dr K.S. Raju Arts & Science College(A),

 Penugonda, W.G.District, Andhra Pradesh, madireddykiranreddy1@gmail.com

ABSTRACT

ABSTRACT Cloud systems suffer from

distributed concurrency bugs, which often

lead to data loss and service outage. This

paper presents CLOUDRAID, a new

automatical tool for finding distributed

concurrency bugs efficiently and effectively.

Distributed concurrency bugs are notoriously

difficult to find as they are triggered by

untimely interaction among nodes, i.e.,

unexpected message orderings. To detect

concurrency bugs in cloud systems

efficiently and effectively, CLOUDRAID

analyzes and tests automatically only the

message orderings that are likely to expose

errors. Specifically, CLOUDRAID mines the

logs from previous executions to uncover the

message orderings that are feasible but

inadequately tested. In addition, we also

propose a log enhancing technique to

introduce new logs automatically in the

system being tested. These extra logs added

improve further the effectiveness of

CLOUDRAID without introducing any

noticeable performance overhead. Our log-

based approach makes it well-suited for live

systems. We have applied CLOUDRAID to

analyze six representative distributed

systems: Hadoop2/Yarn, HBase, HDFS,

Cassandra, Zookeeper, and Flink.

CLOUDRAID has succeeded in testing 60

different versions of these six systems (10

versions per system) in 35 hours, uncovering

31 concurrency bugs, including nine new

bugs that have never been reported before.

For these nine new bugs detected, which have

all been confirmed by their original

developers, three are critical and have already

been fixed.

1.INTRODUCTION

 1.1 Introduction
DIstributed systems, such as scale-out

computing frameworks, distributed key-

value stores , scalable file systems and cluster

management services are the fundamental

building blocks of modern cloud

applications. As cloud applications provide

24/7 online services to users, high reliability

of their underlying distributed systems

becomes crucial. However, distributed

systems are notoriously difficult to get right.

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1404

There are widely existing software bugs in

real-world distributed systems, which often

cause data loss and cloud outage, costing

service providers millions of dollars per

outrage .Among all types of bugs in

distributed systems, distributed concurrency

bugs are among the most troublesome .These

bugs are triggered by complex inter leavings

of messages, i.e., unexpected orderings of

communication events. It is difficult for

programmers to correctly reason about and

handle concurrent executions on multiple

machines. This fact has motivated a large

body of research on distributed system model

checkers ,which detect hard-to-find bugs by

exercising all possible message orderings

systematically. Theoretically, these model

checkers can guarantee reliability when

running the same workload verified earlier.

However, distributed system model checkers

face the state-space explosion problem

.Despite recent advances It is still difficult to

scale them to many large real-world

applications. For example, in our

experiments for running the WordCount

workload on Hadoop2/Yarn, 5,495 messages

are involved. Even in such a simple case, it

becomes impractical to test exhaustively all

possible message orderings in a timely

manner. This paper proposes a novel strategy

for detecting distributed concurrency bugs.

Instead of trying all possible message

orderings exhaustively, we test selectively

only those message orderings that are likely

to expose bugs. Which message orderings are

likely to trigger errors then? We address this

key question based on two observations

2.LITERATURE SURVEY

2.1 INTRODUCTION

 "Mining Execution Logs for Concurrency

Bugs" by T. Xie et al. (ACM Transactions on

Software Engineering and Methodology,

2009):This paper proposes a technique for

mining execution logs to automatically detect

concurrency-related bugs, including

deadlocks and data races. It discusses the

challenges and opportunities in leveraging

log data for bug detection in concurrent

systems. "Mining Console Logs for Large-

Scale System Problem Detection" by Y.

Zhang et al. (USENIX Annual Technical

Conference, 2014):The authors present a

framework for mining console logs to detect

system problems in large-scale distributed

systems. This work highlights the importance

of log data in diagnosing system issues and

proposes techniques for efficient log

analysis. "Detecting Concurrency Bugs

through Differential Analysis" by C.

Flanagan et al. (ACM SIGPLAN Notices,

2008):This paper introduces a differential

analysis approach for detecting concurrency

bugs by comparing the behaviors of

concurrent executions. It discusses

techniques for identifying inconsistencies

and anomalies that may indicate the presence

of concurrencyrelated issues. "Log-based

Anomaly Detection and Diagnosis in Large-

scale Cloud Platforms" by Z. Chen et al.

(IEEE Transactions on Dependable and

Secure Computing, 2017):The authors

propose a logbased anomaly detection and

diagnosis framework for large-scale cloud

platforms. This work emphasizes the

importance of log analysis in identifying

abnormal behaviors and diagnosing system

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1405

faults, including concurrency-related issues.

"Log-based Root Cause Analysis for Cloud-

native Applications" by J. Chen et al. (IEEE

International Conference on Cloud

Computing, 2019):This paper presents a log-

based root cause analysis approach for

diagnosing issues in cloud-native

applications. It discusses techniques for

correlating log events across distributed

components and identifying the root causes

of system anomalies, including concurrency

bugs. "LogEnhance: Enhancing Log Data for

Anomaly Detection in Cloud Systems" by A.

Kumar et al. (IEEE Transactions on Cloud

Computing, 2020):The authors propose

LogEnhance, a framework for enhancing log

data to improve anomaly detection in cloud

systems. This work discusses techniques for

extracting relevant features from log data and

enhancing its quality for detecting

concurrency-related anomalies. "Automated

Detection of Concurrency-related Issues

through Runtime Analysis" by D. Dig et al.

(IEEE Transactions on Software

Engineering, 2012):This paper presents

techniques for automated detection of

concurrency-related issues through runtime

analysis. It discusses approaches for

instrumenting software to monitor concurrent

executions and detecting anomalies that may

indicate concurrency bugs. "Characterizing

Cloud Resource Usage Anomalies" by Y.

Yang et al. (IEEE/ACM International

Symposium on Quality of Service, 2013):The

authors investigate techniques for

characterizing anomalies in cloud resource

usage patterns. This work discusses the

implications of concurrencyrelated issues on

resource utilization and proposes methods for

detecting and diagnosing such anomalies.

"Scalable Detection of Concurrency-related

Issues in Cloud Applications" by S.

 Park et al. (IEEE International Conference

on Cloud Computing, 2016):This paper

presents scalable techniques for detecting

concurrency-related issues in cloud

applications. It discusses approaches for

analyzing large volumes of log data and

detecting anomalies that may indicate the

presence of concurrency bugs. "Distributed

and Parallel Execution of Concurrency

Control Algorithms for Distributed Database

Systems" by P. Bernstein et al. (ACM

Transactions on Database Systems,

1987):Although an older work, this paper

provides foundational knowledge on

distributed concurrency control algorithms,

which are essential for understanding the

theoretical aspects of concurrency control in

distributed systems.

2.2ALGROTHIMS :

Detecting distributed concurrency bugs in

cloud environments is a challenging task due

to the complexity and scale of distributed

systems. Cloud Raid, a tool or methodology

designed for this purpose, likely involves

several key algorithms to analyze logs and

enhance detection accuracy. Below is an

outline of the potential algorithms and

enhancements involved in such a system:

Distributed Log Aggregation: Collects and

preprocesses logs from multiple nodes to

ensure

• consistency and relevance. Event

Correlation: Reconstructs sequences of

events across distributed nodes using unique

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1406

• identifiers. Pattern Matching: Detects

known concurrency patterns using state

machines or regular

• expressions. Anomaly Detection: Identifies

deviations from normal behavior using

machine learning or

• statistical methods. Root Cause

Localization: Traces back anomalies to their

root causes using dependency

• graphs or causal models. Feedback Loop

and Model Enhancement: Continuously

improves detection models

• through supervised learning and feedback

integration

3. EXISTING SYSTEM

Log Collection Module: Responsible for

collecting log data from various sources

within the distributed system, including

application servers, databases, load

balancers, and network devices.Supports

different log formats and protocols, such as

syslog, JSON, and custom log formats.

• Log Parsing and Preprocessing: Parses

raw log data to extract relevant information,

such as timestamps, log levels, event types,

and execution traces.Preprocesses log data to

normalize timestamps, handle multiline logs,

and filter out irrelevant information.

 • Anomaly Detection Engine: Employs

algorithms and techniques to detect

anomalies in log data that may indicate the

presence of concurrency bugs.Utilizes

statistical analysis, machine learning models,

or rule-based approaches to identify

abnormal behaviors and patterns. • Root

Cause Analysis Module:Conducts root cause

analysis to determine the underlying reasons

for detected concurrency bugs.Correlates log

events across distributed components to trace

back the sequence of events leading to the

bug.Provides diagnostic insights to pinpoint

the root causes accurately. • Alerting and

Reporting System:Generates alerts or

notifications when concurrency bugs are

detected, indicating their severity and

potential impact on the system.Generates

detailed reports summarizing detected bugs,

root cause analysis findings, and

recommended actions for

resolution.Integrates with existing

monitoring and notification systems for

seamless alert delivery. • User

Interface:Provides a user-friendly interface

for system administrators and developers to

monitor the detection of concurrency bugs,

view alert notifications, and access detailed

reports.Supports customizable dashboards,

interactive visualizations, and historical log

data analysis. • Integration with Development

Workflow:Integrates with version control

systems, continuous integration pipelines,

and bug tracking tools to facilitate bug

detection and resolution. • Provides APIs and

webhooks for seamless integration with

existing development and deployment

workflows. • Scalability and Performance

Optimization:Designed to scale horizontally

and vertically to handle large volumes of log

data and accommodate growing system

requirements. • Implements performance

optimizations to minimize processing

overhead and ensure realtime or near-real-

time detection of concurrency bugs. •

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1407

Security and Compliance:Ensures the

security and privacy of log data through

encryption, access controls, and compliance

with data protection regulations. •

Implements audit trails and logging

mechanisms to track user activities and

system changes. • Documentation and

Support:Provides comprehensive

documentation covering system architecture,

installation, configuration, and usage

guidelines.Offers technical support, training

resources, and community forums for users to

seek assistance and share experiences.

DisadvantagesLimited Log Format

Support: Some existing systems may have

limitations in supporting diverse log formats

used across different distributed components,

leading to challenges in parsing and

analyzing log data effectively. Static

Thresholds for Anomaly Detection:

Traditional anomaly detection approaches

may rely on static thresholds or rules, which

may not adapt well to dynamic changes in

system behavior or evolving concurrency bug

patterns

4. PROPOSED SYSTEM:

Log Collection Module: Responsible

for gathering log data from various

distributed components, including

cloud servers, containers, databases,

and network devices. Supports

multiple log formats and protocols to

accommodate diverse system

architectures and technologies.

 2. Log Parsing and Enrichment:

Parses raw log data to extract relevant

information such as timestamps, log

levels, event types, and contextual

metadata. Enriches log entries with

additional context, such as transaction

IDs, user sessions, and request

payloads, to facilitate correlation and

analysis.

1. 3. Anomaly Detection Engine:

Utilizes advanced anomaly detection

algorithms to identify patterns

indicative of concurrency bugs,

including race conditions, deadlocks,

and inconsistent state transitions.

Adapts to evolving system behavior

and dynamically adjusts detection

thresholds based on historical data

and real-time observations.

2. 4. Root Cause Analysis Module:

Performs root cause analysis to trace

detected concurrency bugs back to

their underlying sources. Correlates

log events across distributed

components to reconstruct the

sequence of events leading to the bug.

Utilizes causal inference techniques

and dependency analysis to pinpoint

the specific conditions triggering

concurrency-related anomalies.

5. Alerting and Reporting System:

Generates real-time alerts and

notifications upon detecting

concurrency bugs, including severity

levels and contextual information.

Provides detailed reports

summarizing detected bugs, root

cause analysis findings, and

recommended remediation actions.

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1408

Integrates with existing incident

management systems and

collaboration platforms for seamless

workflow integration.

6. User Interface and Dashboard:

Offers an intuitive web-based

interface for system administrators

and developers to monitor the

detection of concurrency bugs and

manage alerts. Presents interactive

dashboards with customizable

visualizations, trend analysis, and

drill-down capabilities for in-depth

exploration of log data.

 7. Integration with Development

Workflow: Seamlessly integrates

with version control systems (e.g.,

Git), continuous integration/delivery

(CI/CD) pipelines, and issue tracking

platforms (e.g., Jira) to streamline

bug detection and resolution

workflows. Provides APIs and

webhooks for programmable

integration with custom toolchains

and automation workflows.

8. Scalability and Performance

Optimization: Designed for

horizontal scalability to

accommodate large-scale distributed

systems and handle increasing log

volumes. Implements performance

optimizations, including distributed

processing and parallelization, to

ensure real-time detection and

analysis of concurrency bugs.

 9. Security and Compliance:

Prioritizes data security and privacy

through encryption, access controls,

and compliance with regulatory

requirements (e.g., GDPR, HIPAA).

Implements authentication and

authorization mechanisms to restrict

access to sensitive log data and

system functionalities.

10. Documentation and Support: -

Provides comprehensive

documentation, including installation

guides, configuration instructions,

and API references. - Offers technical

support, training materials, and

community forums to assist users in

deploying, configuring, and utilizing

the system effectively. This proposed

system for CloudRaid aims to provide

a robust and scalable solution for

detecting distributed concurrency

bugs in cloud-based applications,

leveraging log mining and

enhancement techniques to enhance

system reliability and performance.

Advantages

 Early Detection of Concurrency

Bugs: By analyzing log data in real-

time, CloudRaid can

 detect concurrency bugs as soon as

they occur, allowing for prompt

investigation and resolution before

they escalate into critical issues.

Comprehensive Log Analysis:

CloudRaid's log mining and

enhancement capabilities

 enable comprehensive analysis of

distributed system logs, allowing it to

detect subtle concurrency-related

anomalies that may go unnoticed with

manual inspection. Root Cause

Analysis: The system's root cause

analysis module helps pinpoint the

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1409

 underlying causes of detected

concurrency bugs, facilitating

targeted remediation efforts and

preventing recurrence of similar

issues.

5.ARCHITECTURE

1. Data Sources:

o Distributed Systems Logs:

These logs are generated by

various services and

components in a distributed

system. They contain

information about events,

timestamps, service

interactions, and potential

error messages.

2. Log Aggregation Layer:

o Log Collectors: Tools or

agents deployed on each

service instance to collect logs

in real-time.

o Central Log Storage: A

scalable storage solution (e.g.,

Elastic search, HDFS) where

all collected logs are

aggregated for analysis.

3. Log Processing Layer:

o Log Parsers: Modules that

process raw logs, extracting

structured information such as

timestamps, event types, and

identifiers.

o Event Correlators: Tools

that correlate events across

different logs to reconstruct

execution traces of distributed

transactions.

4. Concurrency Bug Detection

Engine:

o Invariant Detector:

Identifies patterns or

invariants in the logs that

represent expected behavior.

o Anomaly Detector: Uses

machine learning models or

rule-based systems to detect

deviations from expected

patterns, indicating potential

concurrency bugs.

5. Enhancement and Feedback Loop:

o Bug Classifier: Classifies

detected anomalies into

categories such as race

conditions, deadlocks, etc.

o Log Enhancement Module:

Enhances logs with additional

context or instrumentation to

improve future detection

accuracy.

o Feedback Mechanism: Uses

detected bug information to

continuously improve the

detection algorithms and

enhance logging practices.

6. User Interface:

o Dashboard: Provides

visualizations and reports on

detected concurrency bugs,

system health, and analysis

results.

o Alerting System: Sends

notifications to developers

and operators when potential

bugs are detected.

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1410

6. MODULES

Cloud Admin

In this module, the Service Provider

has to login by using valid user name

and password. After login successful

he can do some operations such as

View All Users and Authorize, View

All Datasets,View All Bug Report

Datasets By Chain,View All Severity

Category Results,View All Bug Fixed

Results,View All Bug Resolved

Results.

View and Authorize Users

In this module, the admin can view

the list of userswho all registered. In

this, the admin can view the

user’sdetails such as, user name,

email, address and admin authorizes

the users.

End User

In this module, there are n numbers of

users are present. User should register

before doing any operations. Once

user registers, their details will be

stored to the database. After

registration successful, he has to login

by using authorized user name and

password. Once Login is successful

user will do some operations likeMy

Profile,Upload Datasets,View All

Datasets,Find Bug Severity

Category,Find Severity Category

Results By Hashcode

OUTPUT SCREEN

7. CONCLUSION

 Reviews are becoming an integral part of our

daily lives; whether go for shopping,

purchase something online or go to some

restaurant, we first check the reviews to make

the right decisions. Motivated by this, in this

research sentiment analysis of drug reviews

was studied to build a recommender system

using different types of machine learning

classifiers, such as Logistic Regression,

Perceptron, Multinomial Naive Bayes, Ridge

classifier, Stochastic gradient

8. REFERENCES

[[1] J. Dean and S. Ghemawat, “Mapreduce:

Simplified data

processing on large clusters,” Commun.

ACM, vol. 51,

no. 1, pp. 107–113, Jan. 2008. [Online].

Available: http:

//doi.acm.org/10.1145/1327452.1327492

[2] V. K. Vavilapalli, A. C. Murthy, C.

Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S.

Seth, B. Saha, C. Curino,

O. O’Malley, S. Radia, B. Reed, and E.

Baldeschwieler, “Apache

hadoop yarn: Yet another resource

negotiator,” in Proceedings of

the 4th Annual Symposium on Cloud

Computing, ser. SOCC ’13.

New York, NY, USA: ACM, 2013, pp. 5:1–

5:16. [Online]. Available:

http://doi.acm.org/10.1145/2523616.252363

3

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1411

[3] L. George, HBase: the definitive guide:

random access to your planet-size

data. " O’Reilly Media, Inc.", 2011.

[4] A. Lakshman and P. Malik, “Cassandra: a

decentralized structured

storage system,” ACM SIGOPS Operating

Systems Review, vol. 44,

no. 2, pp. 35–40, 2010.

[5] Z. Guo, S. McDirmid, M. Yang, L.

Zhuang, P. Zhang,

Y. Luo, T. Bergan, P. Bodik, M. Musuvathi,

Z. Zhang, and

L. Zhou, “Failure recovery: When the cure is

worse than

the disease,” in Proceedings of the 14th

USENIX Conference on

Hot Topics in Operating Systems, ser.

HotOS’13. Berkeley, CA,

USA: USENIX Association, 2013, pp. 8–8.

[Online]. Available:

http://dl.acm.org/citation.cfm?id=2490483.2

490491

[6] D. Yuan, Y. Luo, X. Zhuang, G. R.

Rodrigues, X. Zhao, Y. Zhang,

P. U. Jain, and M. Stumm, “Simple testing

can prevent most critical

failures: An analysis of production failures in

distributed dataintensive

systems,” in Proceedings of the 11th

USENIX Conference on

Operating Systems Design and

Implementation, ser. OSDI’14. Berkeley,

CA, USA: USENIX Association, 2014, pp.

249–265. [Online].

Available:

http://dl.acm.org/citation.cfm?id=2685048.2

685068

[7] H. S. Gunawi, M. Hao, T.

Leesatapornwongsa, T. Patana-anake,

T. Do, J. Adityatama, K. J. Eliazar, A.

Laksono, J. F. Lukman,

V. Martin, and A. D. Satria, “What bugs live

in the cloud?

a study of 3000+ issues in cloud systems,” in

Proceedings of

the ACM Symposium on Cloud Computing,

ser. SOCC ’14. New

York, NY, USA: ACM, 2014, pp. 7:1–7:14.

[Online]. Available:

http://doi.acm.org/10.1145/2670979.267098

6

[8] T. Leesatapornwongsa, J. F. Lukman, S.

Lu, and H. S. Gunawi,

“Taxdc: A taxonomy of non-deterministic

concurrency bugs in

datacenter distributed systems,” in

Proceedings of the Twenty-First

International Conference on Architectural

Support for Programming

Languages and Operating Systems, ser.

ASPLOS ’16. New

York, NY, USA: ACM, 2016, pp. 517–530.

[Online]. Available:

http://doi.acm.org/10.1145/2872362.287237

4

[9] T. Leesatapornwongsa, M. Hao, P. Joshi,

J. F. Lukman, and H. S.

Gunawi, “Samc: Semantic-aware model

checking for fast discovery

of deep bugs in cloud systems.” in OSDI,

2014, pp. 399–414.

[10] H. Lin, M. Yang, F. Long, L. Zhang, and

L. Zhou, “Modist: Transparent

model checking of unmodified distributed

systems,” in 6th

USENIX Symposium on Networked Systems

Design & Implementation

(NSDI), 2009.

http://doi.acm.org/10.1145/2670979.2670986
http://doi.acm.org/10.1145/2670979.2670986

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1412

[11] J. Simsa, R. E. Bryant, and G. Gibson,

“dbug: systematic evaluation

of distributed systems.” USENIX, 2010.

[12] H. Guo, M. Wu, L. Zhou, G. Hu, J.

Yang, and L. Zhang, “Practical

software model checking via dynamic

interface reduction,” in

Proceedings of the Twenty-Third ACM

Symposium on Operating Systems

Principles. ACM, 2011, pp. 265–278.

[13] D. Borthakur et al., “Hdfs architecture

guide,” Hadoop Apache Project,

vol. 53, 2008.

[14] P. Hunt, M. Konar, F. P. Junqueira, and

B. Reed, “Zookeeper: Waitfree

coordination for internet-scale systems.” in

USENIX annual

technical conference, vol. 8, no. 9, 2010.

[15] P. Carbone, A. Katsifodimos, S. Ewen,

V. Markl, S. Haridi, and

K. Tzoumas, “Apache flink: Stream and

batch processing in a single

engine,” Bulletin of the IEEE Computer

Society Technical Committee on

Data Engineering, vol. 36, no. 4, 2015.

[16] (2018) Wala home page. [Online].

Available: http://wala.

sourceforge.net/wiki/index.php/Main_Page/.

[17] W. Xu, L. Huang, A. Fox, D. Patterson,

and M. I. Jordan, “Detecting

large-scale system problems by mining

console logs,” in Proceedings

of the ACM SIGOPS 22nd symposium on

Operating systems principles.

ACM, 2009, pp. 117–132.

[18] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah,

Y. Luo, D. Yuan, and

M. Stumm, “lprof: A non-intrusive request

flow profiler for

distributed systems.” in OSDI, vol. 14, 2014,

pp. 629–644.

[19] L. Li, C. Cifuentes, and N. Keynes,

“Boosting the performance of

flow-sensitive points-to analysis using value

flow,” in Proceedings of

the 19th ACM SIGSOFT Symposium and the

13th European Conference

on Foundations of Software Engineering, ser.

ESEC/FSE ’11. New

York, NY, USA: ACM, 2011, pp. 343–353.

[Online]. Available:

http://doi.acm.org/10.1145/2025113.202516

0

[20] ——, “Precise and scalable context-

sensitive pointer analysis

via value flow graph,” in Proceedings of the

2013 International

Symposium on Memory Management, ser.

ISMM ’13. New

York, NY, USA: ACM, 2013, pp. 85–96.

[Online]. Available:

http://doi.acm.org/10.1145/2464157.246648

3

[21] T. Tan, Y. Li, and J. Xue, “Efficient and

precise points-to

analysis: Modeling the heap by merging

equivalent automata,” in

Proceedings of the 38th ACM SIGPLAN

Conference on Programming

Language Design and Implementation, ser.

PLDI 2017. New

York, NY, USA: ACM, 2017, pp. 278–291.

[Online]. Available:

http://doi.acm.org/10.1145/3062341.306236

0

[22] Y. Sui and J. Xue, “On-demand strong

update analysis via valueflow

 ISSN2321-2152

 www.ijmece .com

 Vol 12, Issue 2, 2024

1413

refinement,” in Proceedings of the 2016 24th

ACM SIGSOFT

International Symposium on Foundations of

Software Engineering, ser.

FSE 2016. New York, NY, USA: ACM,

2016, pp. 460–473. [Online].

Available:

http://doi.acm.org/10.1145/2950290.295029

6

[23] (2018) Google protocol buffer. [Online].

Available: https:

//developers.google.com/protocol-buffers/.

[24] E. Gamma, Design patterns: elements of

reusable object-oriented software.

Pearson Education India, 1995.

[25] J.-G. Lou, Q. Fu, Y. Wang, and J. Li,

“Mining dependency in

distributed systems through unstructured logs

analysis,” ACM

SIGOPS Operating Systems Review, vol. 44,

no. 1, pp. 91–96, 2010.

[26] D. Yuan, J. Zheng, S. Park, Y. Zhou, and

S. Savage, “Improving

software diagnosability via log

enhancement,” ACM Transactions

on Computer Systems (TOCS), vol. 30, no. 1,

pp. 1–28, 2012.

[27] J. Zhu, P. He, Q. Fu, H. Zhang, M. R.

Lyu, and D. Zhang, “Learning

to log: Helping developers make informed

logging decisions,”

in 2015 IEEE/ACM 37th IEEE International

Conference on Software

Engineering, vol. 1. IEEE, 2015, pp. 415–

425.

