

ISSN2321-2152 www.ijmece .com

Vol 9, Issuse.1Jan 2021

2

Reliability of Cloud Storage Systems in the Face of Natural Disasters using

Geo-Distance Based 2-Replica Maintenance Algorithm

Sanapala Bhaskara Rao, Jami Janardhana Rao, R V L S N Sastry, Smita Rani Sahu
Assistant Professor, Associate Professor, Assistant Professor3,4

Department of CSE

Abstract:
Finding and correcting issues quickly may improve software quality, development time, and cost. Software

failure prediction (SFP) using machine learning (ML) has become popular, although the accuracy of SFP

predictions produced by various ML algorithms varies greatly. Computer vision, natural language processing,

voice recognition, and many more disciplines may benefit from deep learning's remarkable outcomes.

Examining what variables could influence the efficacy of Convolutional Neural Networks (CNNs) and Multi-

Layer Perceptrons (MLPs) is the goal of this study. Saving time, cutting costs, and increasing the chance of

success and customer happiness are all possible outcomes of finding and fixing software issues as soon as

they are discovered. Although ML and DL have been extensively used for SFP, the outcomes from various

algorithms may be inconsistent. The accuracy of XGBoost and CatBoost, two ANN-MLP boosting models

used in this study, significantly improved when applied to NASA datasets. To enhance accuracy, we will use

a voting ensemble that incorporates ANN-MLP along with booster models like XGBoost and CatBoost.

KEYWORDS: XGBoost, Artificial Neural Networks, Convolutional Neural Networks, Multi Layer

Perceptrons, Software Fault Prediction

Introduction
Building reliable software is a tough nut to crack for

programmers. Software development must adhere to a

specified set of procedures in order to generate reliable and

high-quality code. The occurrence of bugs is a major

drawback of having dependable software, as they cause

final products to be less trustworthy and fail to meet

customer satisfaction. Software of a high quality can only

be produced when the software development life cycle is

well-planned and controlled [1]. Problems may arise at any

point in software development, as they can in any human-

driven process. There are a number of quality models that

may assist reduce software failure rates and make progress

in software fault prediction; one of these models is learning

prevention. It is not an easy effort to create software that is

devoid of bugs. Some vulnerabilities and defects may

remain undetected, no matter how well a team follows

development protocols.

It takes meticulous planning, management, and testing to

find and fix software vulnerabilities. A development team

may take use of fault prediction to repeatedly test files or

modules with a greater fault probability. The components

that aren't working will be examined more closely because

of this. The remaining defects will be more likely to be

addressed, and the final software product will be better

suitable for its intended audience, if this happens. This

approach reduces the time and effort required to maintain

the project's smooth operation. Poor software quality is

clearly caused by software defects; repairing these flaws

may be a costly and time-consuming ordeal; and SFP has

been used to lessen the impact of these problems. Spending

less time, money, and effort creating software products is

another benefit of the SFP [2]. The most labor-and

resource-intensive aspects of software development are

widely acknowledged to be bug finding and repairing [3].

Assistant Professor, Associate Professor, Assistant Professor3,4

Department of CSE

ISSN2321-2152 www.ijmece .com

Vol 9, Issuse.1Jan 2021

3

The capacity of various machine learning techniques to

predict software errors has been the subject of much

research. Some of these methods include decision trees [5],

support vector machines [4], genetic algorithms, and

Artificial Neural Networks (ANNs). Additional

investigation is necessary. How did the most well-known

deep learning models get to be what they are today?

optimized? Is it true that the majority of deep learning

developers use open-source software? How can we

address these critical challenges, and what do the

experts think should be done next? The issues raised by

[6] are all addressed directly. They saved us a lot of

work and time by doing a thorough literature review

that revealed the most reliable sources and results.

This research used deep learning methods while

keeping the limitations of previous versions in mind.

Deep Learning is a subfield of ML that uses supervised

and unsupervised techniques to train neural networks to

learn very complex tasks. Impressive outcomes have

been seen in several domains when this has been

implemented [7]. Deep learning allows multi-layered

computer models to gain data abstractions at several

levels [8]. By automatically extracting essential

qualities from raw data, the result becomes more

resilient when the input is changed [9]. In addition to

handling enormous amounts of data, deep learning

provides a plethora of models for mining unlabeled

data for useful patterns, and the representations learned

by DNNs may be applied to many scenarios. One

mathematical procedure that convolutional neural

networks (CNNs) employ is [5]. Its operation is similar

to that of feedforward networks [10].

Convolutional neural networks (CNNs) use stacks of

convolutional layers of varied sizes to reduce the

computational load. Several pairs-attached maximum-

pooling (sub-sampling) layers (typically stacked one

pooling layer below a convolutional layer). The last

layer is then split in half according to its degree of

connectivity. Connectivity between neurons in

different layers of the convolutional layer is determined

by their relative locations. In convolutional neural

network (CNN) training, forward propagation is

utilized to compute the input data's actual classification

using the current parameters, and back propagation is

employed to update the trainable parameters in order to

minimize the differences between the actual and

desired classification outputs. Convolutional neural

networks (CNNs) are trained using the back

propagation technique. After randomly assigning

weights to all network nodes, it updates those weights

using the most recent data. The fact that CNN makes

use of weight sharing to reduce computing needs is one

of its advantages. To minimize the impact of distortion,

the output is sub-sampled after each nonlinear

computing step, and max pooling is used to restrict the

quantity of input data. With fewer parameters, there are

fewer linkages, shared weights, and down samples

[11]. By using a CNN, one may enhance performance,

decrease memory use, and lessen the computational

burden.

Here is how the rest of the paper is structured: Part 2

delves into a discussion of the literature review, while

Part 3 introduces the issue statement and Part 4 delves

into the methodology of the proposed task. Section 5

discusses the study's findings and analysis, and Section

6 wraps up the report by outlining potential areas for

further research.

Literature Review

In this section, we describe the findings of the
state-of- the-art research that has used ML, NN, and
Deep Learning and we review the most relevant
works that have focused on SFP. Numerous studies
have shown that better resource management, bug
fixes, and higher standards for overall software
quality all lead to happier customers. Therefore,
these studies must be investigated to ensure
comprehension of SFP's facets.

Machine Learning

Following the successful application of ML to

SFP, the authors of [12] acknowledge the need to

further improve prediction accuracy and provide a

CRC-based CSDP approach that may classify the

query software modules according to their level of

defect. We compared the proposed technique to

others, such as weighted Naive Bayes (NB), cost-

sensitive boosting neural network (CBNN),

compressed C4.5 decision tree (CC4.5), and

coding-based ensemble learning (CEL), and we

ran trials using 10 datasets from NASA's MAP

Dataset Project. The findings appear to have been

best reached by using the given technique. Fig. 2

[6] shows the neuron. In order to identify the most

critical software metrics, the author developed the

Majority Vote-based Feature Selection method, or

MVFS [13]. Four distinct machine learning

algorithms—PC1, CM1, KC1, and JM1—each

using a unique mix of filters—Information Gain,

Symmetrical Uncertainty Relief feature, and

Correlation-based method—were used to assess

MVFS's effectiveness.

The Neural Network Method
A neural network typically consists of three

ISSN2321-2152 www.ijmece .com

Vol 9, Issuse.1Jan 2021

4

primary components. We start with neurons. These

are computational cells, to put it simply. In a

neuron, information may be input, processed, and

then passed on to other cells. Neural networks

depend substantially on their interconnections to

achieve desired outcomes. Figure 2 shows a model

of a neuron that includes a set of connecting

connections, where each link is defined by a

weight, an adder to sum the input, and an

activation function. Part two consists of the actual

network's framework. The input, hidden, and

output layers that make up the feed forward

architecture are the most common in neural

networks. In a feed-forward network, information

travels from the nodes that receive it to those that

process it in the hidden layers. The third part is a

learning algorithm that specifies how to change the

weights of the network during training to reduce

output errors. By repeatedly feeding the network

incorrect signals from the output layer, the weights

are learned using a back propagation approach [6,

7]. The inherent intelligence and distributed

massively parallel design of a neural network

provide its processing

capability. Its ability to tackle challenging jobs is a direct result of these traits.

Comparison

Results

Data Analysis and Interpretation

Modify Model parameters

Apply Machine Learning

Normalization

Select dataset

ISSN2321-2152 www.ijmece .com

Vol 9, Issuse.1Jan 2021

5

Section A: Self-Study

The use of a deep convolutional neural network

(DP-CNN) for defect prediction is suggested in

[14]. Software may have its semantic and

structural features automatically learned by using

a convolutional neural network (CNN). Tokens are

first retrieved and encoded as numerical vectors

using Abstract Syntax Trees (ASTs) [15]. Then, in

the following three processes, the extracted tokens

are refined. Afterwards, it includes CNN in its mix

of traditional defect prediction characteristics. It

checks the source code for remaining defects using

Logic Regression. Research on seven different

open-source projects indicated that the DP-CNN

[16] outperformed the state-of-the-art method by

an average of 12%. For the purpose of defect

prediction in source code, [17] use automatic

feature learning to construct a prediction model.

When representing source code as an abstract

syntax tree (AST)[19], they use a long-term

memory network (LSTM)[18] whose tree

topology is ideal. A tree-structured network of

LSTM units is used to build the model, which

allows it to better capture the underlying syntactic

and multi-level semantics of source code. Results

from training the model make it feasible to

automatically detect corrupted files, regardless of

whether they are part of the active project or not.

Furthermore, it is capable of isolating problematic

lines of code inside a source file. Insight into the

model's reasoning and its overall efficacy may be

gained from this [20].

There are four steps to their procedures:

a. Extract the source code into an Abstract Syntax

Tree (AST); b. Create a continuous-valued vector

representing each AST node by embedding its

label name into it; c. Feed this vector into a tree-

based network of Long Short-Term Memory

(LSTM) neurons to obtain a representation of the

entire AST; and d. Apply a classifier, such as

Logistic Regression.

Statement of the Problem
Discovering and implementing the optimal machine

learning algorithms for SFP is the main objective. The

results of this research suggest that although CNN and

MLP networks may achieve a sufficient level of

accuracy for software failure prediction (SFP), the use

of more recent algorithms like XGBoost and CatBoost

in conjunction with ANN-MLP networks can

significantly enhance this accuracy. Datasets from

NASA's JM1, KC1, PC1, and PC2 were used for the

experiments. A number of parts make up this system,

including layers, epochs, batches, dropout rate, while

optimizer

 Suggested Approach

Following the procedures shown in the diagram is the

recommended methodology.1. Choose a dataset. 2.

Apply machine learning techniques.
Modifying model parameters

Comparison

Data analysis and interpretation Result

Figure 1. Proposed work Flow

4 Approach Collection of Data

In order to construct our automated fault

forecast model, we have used 22 features in

our research. Included in the 22 features

shown in Table 1 are 21 independent metrics

and 1 outcome information derived from

software defect databases. that is, which is

defective and which is not.

Table 1: Dataset Attributes

The results of the experiment demonstrate that

the MLP (XGBoost & Catboost) method
outperformed the other algorithms with an

accuracy of 82.6%.

4.1 SYSTEM ARCHITECTURE

ISSN2321-2152 www.ijmece .com

Vol 9, Issuse.1Jan 2021

6

Figure 2. System architecture

Figure 2 shows the proposed system architecture in its entirety. After the dataset is loaded, the system moves

on to the data preparation stage as an input procedure. To deal with data noise, data preparation is necessary.

As part of its preprocessing duties, data deduplication and filtering are carried out. Following the conclusion

of data preprocessing, features are chosen, and the dataset is used for training with an 80% success rate and

testing with a 20% success rate. Once the model has been trained, it uses machine learning techniques to

forecast software faults and evaluates the suggested models based on measures like accuracy that track their

progress.

Results and Analysis
After the dataset is loaded, the system moves on to the data preparation stage as an input procedure. To deal

with data noise, data preparation is necessary. As part of its preprocessing duties, data deduplication and

filtering are carried out. Following the conclusion of data preprocessing, features are chosen, and the dataset

is used for training with an 80% success rate and testing with a 20% success rate. Once the model has been

trained, it uses machine learning techniques to forecast software faults and evaluates the suggested models

based on measures like accuracy that track their progress.

ISSN2321-2152 www.ijmece .com

Vol 9, Issuse.1Jan 2021

7

Figure 3. Performance evaluation of the Proosed Model

Conclusion
Through our work, we show that deep learning can

make predictions in many different fields,

including software engineering, bioinformatics,

computer vision, natural language processing, and

more. Two main research objectives were put forth

by the authors of this work: (1) how can the

algorithms that were analyzed have their

parameters adjusted to perform better, and (2)

which deep learning approaches provide the best

SFP outcomes. Finding out what parts of applying

deep learning algorithms to the SFP domain truly

impact their performance is the main aim of this

study. The research shows that adjusting the

settings had a significant effect, which paid off

with good results overall and especially in terms of

the detection rate. In the future, we want to conduct

further tests and collaborate with other data sets to

see if the data set has a significant impact (domain)

or whether it is really dependent on the algorithm

settings.

References
[1] "An approach to efficient software bug

prediction using regression analysis and neural

networks," International Journal of Innovation

Research in Computer Communication

Engineering, volume 3, issue 10, October 2015, by

S. Parnerkar, A. V. Jain, and C. Birchha.

Proc. IEEE 29th International Conference on

Tools and Artificial Intelligence (ICTAI),

November 2017, pp. 45-52, "Convolutional neural

networks over control flow graphs for software

defect prediction" (A. V. Phan, M. L. Nguyen, and

L. T. Bui, 2017).

[3] In their 2016 paper "Iterative software fault

prediction with a hybrid approach," Erturk and

Sezer published their findings in the Journal of

Applied Soft Computing, volume 49, pages 1020–

1033.

[4] "Software Bug Prediction System Using

Neural Network," published in 2016 by R. Kumar

and D. Gupta in the European Journal of Advanced

Engineering Technology, volume 3, issue 7, pages

78–84.

[5] In Deep Learning, edited by I. B. Y.

Goodfellow and A. Courville, the 2016 edition was

published in Cambridge, UK, by MIT Press.

Networks and Learning Machines, by S. Haykin

[6]. Published by Pearson in 2009 in London,

United Kingdom.

Neuronal network methods for software reliability

assessment using

"dynamic weighted combinational models,"

published in April 2007 in the Journal of Systems

Software, volume 80, issue 4, pages 606-615.

*"A hybrid approach for software fault prediction

using artificial neural network and simplified

swarm optimization," [1] by A. Pahal and R. S.

Chillar pp. 601-605, March 2017, IJARCCE,

volume 6, issue 3.

In their 2015 article "Deep learning," Y. LeCun, Y.

H. Bengio, and Hinton discuss deep learning in

Nature, volume 521, issue 7553, pages 436–444.

In the proceedings of the 16th International

Conference on Computer Science and Information

(IEEE/ACIS), May 2017, S. Yang, L. Chen, T.

Yan, Y. Zhao, and Y. Fan presented "An ensemble

classification algorithm for convolutional neural

network based on AdaBoost," which can be found

on pages 401-406.

[4] "Hardware accelerated convolutional neural

networks for synthetic vision systems," in Proc.

IEEE Int. Symp. Circuits Syst., May 2010, pp.

257-260, by C. Farabet, B. Martini, P. Akselrod, S.

Talay, Y. LeCun, and E. Culurciello.

"Artificial neural network-based metric selection

for software fault-prone prediction model,"

published in December 2012 in the International

Journal of Engineering Software, was written by

C. W. S. Jin Jin and M. J. Ye.

“Deep learning in mobile and wireless networking:

A survey” by C. Zhang, P. Patras, and H. Haddadi

was published in the 2019 third quarter of the IEEE

Communications Surveys (vol. 21, no. 3, pp. 2224-

2287).

"A clustering algorithm for software fault

prediction" was published in the proceedings of

ISSN2321-2152 www.ijmece .com

Vol 9, Issuse.1Jan 2021

8

the 2010 International Conference on Computer

Communication and Technology (ICCCT) in

September and includes the works of D. Kaur, A.

Kaur, S. Gulati, and M. Aggarwal.

The article "Software fault prediction model using

clustering algorithms determining the number of

clusters automatically" was published in 2014 by

M. Park and H. Hong in the International Journal

of Software Engineering Applications.

[9] "Genetic feature selection for software defect

prediction," by R. S. Wahono and N. S. Herman,

published in January 2014 in Adv. Sci. Lett.,

volume 20, issue 1, pages 239–244.

In the International Journal of Software

Engineering and Knowledge Engineering, the

authors Wang, Khoshgoftaar, Van Hulse, and Gao

(2011) published an article titled "Metric selection

for software defect prediction" with pages 237–

257.

“Software defect prediction via convolutional

neural network” (J. Li, P. He, J. Zhu, and M. R.

Lyu, 2017), Proceedings of the IEEE International

Conference on Software Quality and Reliability

(QRS), July 2017, pages 318–328.

In their article titled "A deep tree-based model for

software defect prediction," the authors C.-J. Kim,

A. Ghose, T. Kim, J. Grundy, S. Wee Ng, T. Tran,

and H. Khanh Dam January 2018, with the arXiv

preprint number: 1802.00921.[On the web]. You

may access it at: http://arxiv.org/abs/1802.00921.

in [13]A technical report published in 2013 by S.

D. Chandra at the Department of Computer

Science and Engineering at the National Institute

of Technology in Rourkela in India describes

software fault prediction using classification rule

mining.

