

Malware Detection A Framework for Reverse Engineered Android

Applications through Machine Learning Algorithms
J.KUSUMA

1
, N.SREENIKETHAN

2
, E.HARI PRASAD

3
, G.SAI MADHAV

4
, M. KRISHNA KANTH

5

1,2,3,4
UG students, Dept of CSE(CS), Malla Reddy Engineering College (Autonomous),

Secunderabad, Telangana State

5
Assistant Professor, Dept of CSE(CS), Malla Reddy Engineering College (Autonomous),

Secunderabad, Telangana State

ABSTRACT

 Today, Android is one of the most used operating systems in smartphone technology. This is the

main reason, Android has become the favorite target for hackers and attackers. Malicious codes are

being embedded in Android applications in such a sophisticated manner that detecting and

identifying an application as a malware has become the toughest job for security providers. In terms

of ingenuity and cognition, Android malware has progressed to the point where they're more

impervious to conventional detection techniques. Approaches based on machine learning have

emerged as a much more effective way to tackle the intricacy and originality of developing

Android threats. They function by first identifying current patterns of malware activity and then

using this information to distinguish between identified threats and unidentified threats with

unknown behavior. This research paper uses Reverse Engineered Android applications’ features

and Machine Learning algorithms to find vulnerabilities present in Smartphone applications. Our

contribution is twofold. Firstly, we propose a model that incorporates more innovative static feature

sets with the largest current datasets of malware samples than conventional methods. Secondly, we

have used ensemble learning with machine learning algorithms such as AdaBoost, SVM, etc. to

improve our model's performance. Our experimental results and findings exhibit 96.24% accuracy

to detect extracted malware from Android applications, with a 0.3 False Positive Rate (FPR). The

proposed model incorporates ignored detrimental features such as permissions, intents, API calls,

and so on, trained by feeding a solitary arbitrary feature, extracted by reverse engineering as an

input to the machine.

 INTRODUCTION

 To this degree, it is guaranteed that

mobile devices are an integral part of most

people's daily lives. Furthermore, Android now

controls the vast majority of mobile devices,

with Android devices accounting for an

average of 80% of the global market share over

the past years. With the ongoing plan of

Android to a growing range of smart phones

and consumers around the world, malware

1064

targeting Android devices has increased as

well. Since it is an open-source operating

system, the level of danger it poses, with

malware authors and programmers

implementing unwanted permissions, features

and application components in Android apps.

The option to expand its capabilities with third-

party software is also appealing, but this

capability comes with the risk of malicious

device attacks. When the number of smart

phone apps increases, so does the security

problem with unnecessary access to different

personal resources. As a result, the applications

are becoming more insecure, and they are

stealing personal information, SMS frauds,

ransom ware, etc.

 In contrast to static analysis

methods such as a manual assessment of

AndroidManifest.xml, source files and Dalvik

Byte Code and the complex analysis of a

managed environment to study the way it treats

a program, Machine Learning includes learning

the fundamental rules and habits of the positive

and malicious settings of apps and then data-

venabling. The static attributes derived from an

application are extensively used in machine

learning methodologies and the tedious task of

this can be relieved if the static features of

reverse-engineered Android Applications are

extracted and use machine learning SVM

algorithm, logistic progression, ensemble

learning and other algorithms to help train the

model for prediction of these malware

applications [1].

 Machine learning employs a range of

methodologies for data classification. SVM

(Support Vector Machine) is a strong learner

that plots each data item as a point in n-

dimensional space (where n denotes the

number of features you have), with the value of

each feature becoming the vector value. Then it

executes classification by locating the hyper-

plane that best distinguishes the two groups,

leading to an improvement identification

property for any two parameters. Conversely,

boosting or ensemble techniques like Adaboost

are assigned higher weights to rectify the

behavior of misclassified variables in

conjunction with other machine algorithms.

When combined alongside weak classifiers, our

preliminary model benefits from deploying

such models since they have a high degree of

precision or classification. [2], [3], [4],

supports classifiers in their system models to

find the highest accuracy. Although using

ensemble or strong classifiers can cause

problems like multi collinearity, which in a

regression model, occurs when two or more

independent variables are strongly associated

with one another. In multivariate regression,

this indicates that one regression analysis may

be forecasted from another independent

variable. This scope of the study can be

presented as a detection journal analysis itself

and can present several experimentations and

1065

results based on machine learning models [5],

[6].

 When an app has access to a resource

in the most recent versions of Android OS, it

must ask the OS for approval, and the OS will

ask the user if they wish to grant or refuse the

request via a pop-up menu. Many reports have

been performed on the success of this resource

management approach. The studies showed

consumers made decisions by giving all

requested access to the applications to their

privileges requests [7]. In contrast to this, over

70% of Android mobile applications seek extra

access that is not needed. They also sought a

permit that is not needed for the app to run. A

chess game that asks for photographs or

requests for SMS and phone call permits, or

loads unwanted packages are an example of an

extra requested authorization. So, trying to

assess an app's vindictiveness and not

understanding the app is a tough challenge. As

a result, successful malicious app monitoring

will provide extra information to customers to

assist them and defend them from information

disclosure [8]. Figure 1 elaborates the android

risk framework through the Google Play

platform, which is then manually configured by

the android device developers.

 Contrary to other smart phone formats,

such as IOS, Android requires users to access

apps from untrusted outlets like file- sharing

sites or third-party app stores. The malware

virus problem has become so severe that 97 %

of all Smartphone malware now targets

Android phones. In a year, approximately 3.25

million new malware Android applications are

discovered as the growth of smartphones

increases. This loosely amounts to a new

malware android version being introduced

every few seconds [9]. The primary aim of

mobile malware is to gain entrance to user data

saved on the computer and user information

used in confidential financial activities, such as

banking. Infected file extensions, files received

via Bluetooth, links to infected code in SMS,

and MMS application links are all ways that

mobile malware can propagate [10]. There are

some strategies for locating apps that need

additional features. Hopefully, by using these

techniques, it would be possible to determine

whether the applications that were flagged as

questionable and needed additional

authorization are malicious.

 Static analysis methodologies are the

most fundamental of all approaches. Until

operating programs, the permissions and source

codes are examined [11]. For many machine

learning tasks, such as enhancing predictive

performance or simplifying complicated

learning problems, ensemble learning is

regarded as the most advanced method. It

enhances a single model's prediction

performance by training several models and

combining their predictions. Boosting,

bagging, and random forest are examples of

1066

common ensemble learning techniques [12]. In

summary, the main contributions of our study

are as follows:

 1) We present a novel subset of features

for static detection of Android malware, which

consists of seven additional selected feature

sets that are using around 56000 features from

these categories. On a collection of more than

500k benign and malicious Android

applications and the highest malware sample

set than any state-of-the-art approach, we

assess their stability. The results obtain a

detection increase in accuracy to 96.24 % with

0.3% false-positives.

 2) With the additional features, we

have trained six classifier models or machine

learning algorithms and also implemented a

Boosting ensemble learning approach

(AdaBoost) with a Decision Tree based on the

binary classification to enhance our prediction

rate.

 3) Our model is trained on the latest

and large time aware samples of malware

collected within recent years including the

latest Android API level than state-of-the-art

approaches. This research paper incorporates

binary vector mapping for classification by

allocating 0 to malicious applications and 1 for

non-harmful and for predictive analysis of each

application fed to the model implemented in

the study. The technique eases the process by

reducing fault predictive errors. Figure 2 shows

the procedure for a better understanding of the

concept applied later in our study. The paper

passes both the categories of applications

through static analysis and then is further

processed for feature extraction. We presented

features in 0’s and 1’s after extraction. Matrix

displays the extraction characteristics of each

application used in the dataset. There are major

issues to be addressed to incorporate our

strategy. High measurements of the features

will make it difficult to identify malware in

many real-world Android applications. Certain

features overlap with innocuous apps and

malware [13]. In comparison, the vast number

of features will cause high throughput

computing. Therefore, we can learn from the

features directly derived from Android apps,

the most popular and significant features. The

paper implements prediction models and

various computer ensemble teaching strategies

to boost and enhance accuracy to resolve this

problem [14]. Feature selection is an essential

step in all machine-based learning approaches.

The optimum collection of features will not

only help boost the outcomes of tests but will

also help to reduce the compass of most

machine-based learning algorithms [15].

Studies have extensively suggested three

separate methods for identifying android

malware: static, interactive meaning

dynamically, and synthetic or hybrid. Static

analysis techniques look at the code without

ever running it, so they're a little sluggish if

1067

carried out manually and have to face a lot of

false positives [16]. Data obfuscation and

complex code loading are both significant

pitfalls of the technique. That is why automated

operation helps to achieve reliability, accuracy,

and lesser time utilization [17]. Reverse

engineer Android applications and extract

features and do static analysis from them

without having to execute them. This method

entails examining the contents of two files:

AndroidManifest.xml and classes.dex, and

working on the file with the .apk extension.

Feature selection techniques and classification

algorithms are two crucial areas of feature-

based types of fraudulent applications. Feature

filtering methods are used to reduce the

dimension size of a dataset. Any of the

functions (attributes) that aren't helpful in the

study are omitted from the data collection

because of this. The remaining features are

chosen by weighing the representational

strength of all the dataset's features [18].

Parsing tools can help learn which permissions,

packages or services an application offers by

analyzing the AndroidManifest.xml file, such

as permission android.permission.call phone,

which allows an application to misuse calling

abilities. The paper elaborates exactly what sort

of sensitive API the authors could name by

decoding the classes.dex file with the Jadx-gui

disassembler [19]. In certain cases, including

two permissions in a single app can signify the

app's possible malicious attacks. For example,

an application with RECEIVE SMS and

WRITE SMS permissions can mask or

interfere with receiving text messages [20] or

applying sensitive API such as

sendTextMessage() can also be harmful and

lead to fraud and stealing. Until we started our

main idea of the project. The fact explained

that Android applications pose a lot of threats

to its user because of the unnecessary programs

compiled inside them and explained why it is

necessary to automate the process of static

analysis for the efficient detection of malware

applications based on the extracted features.

The rest of the paper is planned as follows.

Related works are examined in Section II.

Section III will present the design and method

of our model. Section IV elaborates the

assessment findings and future threats. The

experiments and results will be dilated and

performed in Sections V and VI. Section VII

includes our research issues, recommendations,

and conclusions for the future.

Existing system

The methods proposed in this related work

contribute to key aspects and a higher

predictive rate for malware detection. Certain

research has focused on increasing accuracy,

while others have focused on providing a larger

dataset, some have been implemented by

employing various feature sets, and many

studies have combined all of these to improve

detection rate efficiency. In [21] the authors

offer a system for detecting Android malware

apps to aid in the organization of the Android

Market. The proposed framework aims to

1068

provide a machine learning-based malware

detection system for Android to detect malware

apps and improve phone users' safety and

privacy. This system monitors different

permission-based characteristics and events

acquired from Android apps and examines

these features employing machine learning

classifiers to determine if the program is

goodware or malicious.

The paper uses two datasets with collectively

700 malware samples and 160 features. Both

datasets achieved approximately 91% accuracy

with Random Forest (RF) Algorithm. [22]

Examines 5,560 malware samples, detecting 94

% of the malware with minimal false alarms,

where the reasons supplied for each detection

disclose key features of the identified malware.

Another technique [23] exceeds both static and

dynamic methods that rely on system calls in

terms of resilience. Researchers demonstrated

the consistency of the model in attaining

maximum classification performance and better

accuracy compared to two state-of-the-art peer

methods that represent both static and dynamic

methodologies over for nine years through

three interrelated assessments with satisfactory

malware samples from different sources.

Model continuously achieved 97% F1-

measure accuracy for identifying applications

or categorizing malware.

[24] The authors present a unique Android

malware detection approach dubbed

Permission- based Malware Detection Systems

(PMDS) based on a study of 2950 samples of

benign and malicious Android applications. In

PMDS, requested permissions are viewed as

behavioral markers, and a machine learning

model is built on those indicators to detect new

potentially dangerous behavior in unknown

apps depending on the mix of rights they

require. PMDS identifies more than 92–94% of

all heretofore unknown malware, with a false

positive rate of 1.52–3.93%.

The authors of this article [25] solely use the

machine learning ensemble learning method

Random Forest supervised classifier on

Android feature malware samples with 42

features respectively. Their objective was to

assess Random Forest's accuracy in identifying

Android application activity as harmful or

benign. Dataset 1 is built on 1330 malicious

apk samples and 407 benign ones seen by the

author. This is based on the collection of

feature vectors for each application. Based on

an ensemble learning approach, Congyi

proposes a concept in [26] for recognizing and

distinguishing Android malware.

Disadvantages

 The system is not implemented

MACHINE LEARNING

ALGORITHM AND ENSEMBLE

LEARNING.

1069

 The system is not implemented Reverse

Engineered Applications

characteristics.

Proposed System

1) We present a novel subset of features for

static detection of Android malware, which

consists of seven additional selected feature

sets that are using around 56000 features from

these categories. On a collection of more than

500k benign and malicious Android

applications and the highest malware sample

set than any state-of-the-art approach, we

assess their stability. The results obtain a

detection increase in accuracy to 96.24 % with

0.3% false-positives.

 2) With the additional features, we have

trained six classifier models or machine

learning algorithms and also implemented a

Boosting ensemble learning approach

(AdaBoost) with a Decision Tree based on the

binary classification to enhance our prediction

rate. 3) Our model is trained on the latest and

large time aware samples of malware collected

within recent years including the latest Android

API level than state-ofthe-art approaches.

Advantages

 The proposed system chooses

the characteristics based on their

capability to display all data

sets. Enhanced efficiency by

reducing the dataset size and the

hours wasted on the

classification process introduces

an effective function selection

process.

 The system used in this study

also incorporates larger feature

sets for classification. Although

this problem arises in machine

learning quite often to some

extent choosing the type of

model for detection or

classification can highly impact

the high dimensionality of the

data being used.

Modules

Service Provider

In this module, the Service Provider has

to login by using valid user name and

password. After login successful he can

do some operations such as

Login, Browse App Data Sets and Train

& Test, View Mobile Apps Trained

and Tested Accuracy in Bar Chart,

View Mobile App Trained and Tested

Accuracy Results, View Malware

Prediction Type, View Malware

1070

Prediction Ratio, Download Predicted

Data Sets, View Malware Prediction

Ratio Results, View All Remote Users.

View and Authorize Users

In this module, the admin can view the

list of users who all registered. In this,

the admin can view the user’s details

such as, user name, email, address and

admin authorizes the users.

Remote User

In this module, there are n numbers of

users are present. User should register

before doing any operations. Once user

registers, their details will be stored to

the database. After registration

successful, he has to login by using

authorized user name and password.

Once Login is successful user will do

some operations like REGISTER AND

LOGIN, PREDICT MALWARE

DETECTION TYPE, VIEW YOUR

PROFILE.

Decision tree classifiers

Decision tree classifiers are used successfully

in many diverse areas. Their most important

feature is the capability of capturing

descriptive decision making knowledge from

the supplied data. Decision tree can be

generated from training sets. The procedure

for such generation based on the set of

objects (S), each belonging to one of the

classes C1, C2, …, Ck is as follows:

Step 1. If all the objects in S belong to the

same class, for example Ci, the decision tree

for S consists of a leaf labeled with this class

Step 2. Otherwise, let T be some test with

possible outcomes O1, O2,…, On. Each

object in S has one outcome for T so the test

partitions S into subsets S1, S2,… Sn where
each object in Si has outcome Oi for T. T

becomes the root of the decision tree and for

each outcome Oi we build a subsidiary

decision tree by invoking the same

procedure recursively on the set Si.

1071

Results

CONCLUSION

In this research, we devised a framework that

can detect malicious Android applications. The

proposed technique takes into account various

elements of machine learning and achieves a

96.24% in identifying malicious Android

applications. We first define and pick functions

to capture and analyze Android apps' behavior,

leveraging reverse application engineering and

AndroGuard to extract features into binary

vectors and then use python build modules and

split shuffle functions to train the model with

benign and malicious datasets. Our

experimental findings show that our suggested

model has a false positive rate of 0.3 with 96%

accuracy in the given environment with an

enhanced and larger feature and sample sets.

The study also discovered that when dealing

1072

with classifications and high-dimensional data,

ensemble and strong learner algorithms

perform comparatively better. The suggested

approach is restricted in terms of static

analysis, lacks sustainability concerns, and fails

to address a key multi collinearity barrier. In

the future, we'll consider model resilience in

terms of enhanced and dynamic features. The

issue of dependent variables or high inter

correlation between machine algorithms before

employing them is also a promising field.

REFERENCES

[1] A. O. Christiana, B. A. Gyunka, and A.

Noah, “Android Malware Detection through

Machine Learning Techniques: A Review,” Int.

J. Online Biomed. Eng. IJOE, vol. 16, no. 02,

p. 14, Feb. 2020, doi:

10.3991/ijoe.v16i02.11549. [2] D. Ghimire and

J. Lee, “Geometric Feature-Based Facial

Expression Recognition in Image Sequences

Using Multi-Class AdaBoost and Support

Vector Machines,” Sensors, vol. 13, no. 6, pp.

7714–7734, Jun. 2013, doi:

10.3390/s130607714. [3] R. Wang, “AdaBoost

for Feature Selection, Classification and Its

Relation with SVM, A Review,” Phys.

Procedia, vol. 25, pp. 800–807, 2012, doi:

10.1016/j.phpro.2012.03.160. [4] J. Sun, H.

Fujita, P. Chen, and H. Li, “Dynamic financial

distress prediction with concept drift based on

time weighting combined with Adaboost

support vector machine ensemble,” Knowl.-

Based Syst., vol. 120, pp. 4–14, Mar. 2017,

doi: 10.1016/j.knosys.2016.12.019. [5] A. Garg

and K. Tai, “Comparison of statistical and

machine learning methods in modelling of data

with multicollinearity,” Int. J. Model. Identif.

Control, vol. 18, no. 4, p. 295, 2013, doi:

10.1504/IJMIC.2013.053535. [6] C. P. Obite,

N. P. Olewuezi, G. U. Ugwuanyim, and D. C.

Bartholomew, “Multicollinearity Effect in

Regression Analysis: A Feed Forward

Artificial Neural Network Approach,” Asian J.

Probab. Stat., pp. 22–33, Jan. 2020, doi:

10.9734/ajpas/2020/v6i130151. [7] W. Wang

et al., “Constructing Features for Detecting

Android Malicious Applications: Issues,

Taxonomy and Directions,” IEEE Access, vol.

7, pp. 67602–67631, 2019, doi:

10.1109/ACCESS.2019.2918139. [8] B.

Rashidi, C. Fung, and E. Bertino, “Android

malicious application detection using support

vector machine and active learning,” in 2017

13th International Conference on Network and

Service Management (CNSM), Tokyo, Nov.

2017, pp. 1–9. doi:

10.23919/CNSM.2017.8256035. [9] J. Li, L.

Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye,

“Significant Permission Identification for

Machine-Learning-Based Android Malware

Detection,” IEEE Trans. Ind. Inform., vol. 14,

no. 7, pp. 3216–3225, Jul. 2018, doi:

10.1109/TII.2017.2789219. [10] G. Suarez-

Tangil, J. E. Tapiador, P. Peris-Lopez, and J.

Blasco, “Dendroid: A text mining approach to

analyzing and classifying code structures in

1072

Android malware families,” Expert Syst. Appl.,

vol. 41, no. 4, pp. 1104–1117, Mar. 2014, doi:

10.1016/j.eswa.2013.07.106.

1073

	CONCLUSION

