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ABSTRACT 

 

 Today, Android is one of the most used operating systems in smartphone technology. This is the 

main reason, Android has become the favorite target for hackers and attackers. Malicious codes are 

being embedded in Android applications in such a sophisticated manner that detecting and 

identifying an application as a malware has become the toughest job for security providers. In terms 

of ingenuity and cognition, Android malware has progressed to the point where they're more 

impervious to conventional detection techniques. Approaches based on machine learning have 

emerged as a much more effective way to tackle the intricacy and originality of developing 

Android threats. They function by first identifying current patterns of malware activity and then 

using this information to distinguish between identified threats and unidentified threats with 

unknown behavior. This research paper uses Reverse Engineered Android applications’ features 

and Machine Learning algorithms to find vulnerabilities present in Smartphone applications. Our 

contribution is twofold. Firstly, we propose a model that incorporates more innovative static feature 

sets with the largest current datasets of malware samples than conventional methods. Secondly, we 

have used ensemble learning with machine learning algorithms such as AdaBoost, SVM, etc. to 

improve our model's performance. Our experimental results and findings exhibit 96.24% accuracy 

to detect extracted malware from Android applications, with a 0.3 False Positive Rate (FPR). The 

proposed model incorporates ignored detrimental features such as permissions, intents, API calls, 

and so on, trained by feeding a solitary arbitrary feature, extracted by reverse engineering as an 

input to the machine. 

 INTRODUCTION  

 

                 To this degree, it is guaranteed that 

mobile devices are an integral part of most 

people's daily lives. Furthermore, Android now 

controls the vast majority of mobile devices, 

with Android devices accounting for an 

average of 80% of the global market share over 

the past years. With the ongoing plan of 

Android to a growing range of smart phones 

and consumers around the world, malware 
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targeting Android devices has increased as 

well. Since it is an open-source operating 

system, the level of danger it poses, with 

malware authors and programmers 

implementing unwanted permissions, features 

and application components in Android apps. 

The option to expand its capabilities with third-

party software is also appealing, but this 

capability comes with the risk of malicious 

device attacks. When the number of smart 

phone apps increases, so does the security 

problem with unnecessary access to different 

personal resources. As a result, the applications 

are becoming more insecure, and they are 

stealing personal information, SMS frauds, 

ransom ware, etc.  

 

                    In contrast to static analysis 

methods such as a manual assessment of 

AndroidManifest.xml, source files and Dalvik 

Byte Code and the complex analysis of a 

managed environment to study the way it treats 

a program, Machine Learning includes learning 

the fundamental rules and habits of the positive 

and malicious settings of apps and then data-

venabling. The static attributes derived from an 

application are extensively used in machine 

learning methodologies and the tedious task of 

this can be relieved if the static features of 

reverse-engineered Android Applications are 

extracted and use machine learning SVM 

algorithm, logistic progression, ensemble 

learning and other algorithms to help train the 

model for prediction of these malware 

applications [1]. 

              Machine learning employs a range of 

methodologies for data classification. SVM 

(Support Vector Machine) is a strong learner 

that plots each data item as a point in n-

dimensional space (where n denotes the 

number of features you have), with the value of 

each feature becoming the vector value. Then it 

executes classification by locating the hyper-

plane that best distinguishes the two groups, 

leading to an improvement identification 

property for any two parameters. Conversely, 

boosting or ensemble techniques like Adaboost 

are assigned higher weights to rectify the 

behavior of misclassified variables in 

conjunction with other machine algorithms. 

When combined alongside weak classifiers, our 

preliminary model benefits from deploying 

such models since they have a high degree of 

precision or classification. [2], [3], [4], 

supports classifiers in their system models to 

find the highest accuracy. Although using 

ensemble or strong classifiers can cause 

problems like multi collinearity, which in a 

regression model, occurs when two or more 

independent variables are strongly associated 

with one another. In multivariate regression, 

this indicates that one regression analysis may 

be forecasted from another independent 

variable. This scope of the study can be 

presented as a detection journal analysis itself 

and can present several experimentations and 
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results based on machine learning models [5], 

[6].  

 

                When an app has access to a resource 

in the most recent versions of Android OS, it 

must ask the OS for approval, and the OS will 

ask the user if they wish to grant or refuse the 

request via a pop-up menu. Many reports have 

been performed on the success of this resource 

management approach. The studies showed 

consumers made decisions by giving all 

requested access to the applications to their 

privileges requests [7]. In contrast to this, over 

70% of Android mobile applications seek extra 

access that is not needed. They also sought a 

permit that is not needed for the app to run. A 

chess game that asks for photographs or 

requests for SMS and phone call permits, or 

loads unwanted packages are an example of an 

extra requested authorization. So, trying to 

assess an app's vindictiveness and not 

understanding the app is a tough challenge. As 

a result, successful malicious app monitoring 

will provide extra information to customers to 

assist them and defend them from information 

disclosure [8]. Figure 1 elaborates the android 

risk framework through the Google Play 

platform, which is then manually configured by 

the android device developers. 

 

              Contrary to other smart phone formats, 

such as IOS, Android requires users to access 

apps from untrusted outlets like file- sharing 

sites or third-party app stores. The malware 

virus problem has become so severe that 97 % 

of all Smartphone malware now targets 

Android phones. In a year, approximately 3.25 

million new malware Android applications are 

discovered as the growth of smartphones 

increases. This loosely amounts to a new 

malware android version being introduced 

every few seconds [9]. The primary aim of 

mobile malware is to gain entrance to user data 

saved on the computer and user information 

used in confidential financial activities, such as 

banking. Infected file extensions, files received 

via Bluetooth, links to infected code in SMS, 

and MMS application links are all ways that 

mobile malware can propagate [10]. There are 

some strategies for locating apps that need 

additional features. Hopefully, by using these 

techniques, it would be possible to determine 

whether the applications that were flagged as 

questionable and needed additional 

authorization are malicious.  

 

              Static analysis methodologies are the 

most fundamental of all approaches. Until 

operating programs, the permissions and source 

codes are examined [11]. For many machine 

learning tasks, such as enhancing predictive 

performance or simplifying complicated 

learning problems, ensemble learning is 

regarded as the most advanced method. It 

enhances a single model's prediction 

performance by training several models and 

combining their predictions. Boosting, 

bagging, and random forest are examples of 
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common ensemble learning techniques [12]. In 

summary, the main contributions of our study 

are as follows: 

 

            1) We present a novel subset of features 

for static detection of Android malware, which 

consists of seven additional selected feature 

sets that are using around 56000 features from 

these categories. On a collection of more than 

500k benign and malicious Android 

applications and the highest malware sample 

set than any state-of-the-art approach, we 

assess their stability. The results obtain a 

detection increase in accuracy to 96.24 % with 

0.3% false-positives.  

 

             2) With the additional features, we 

have trained six classifier models or machine 

learning algorithms and also implemented a 

Boosting ensemble learning approach 

(AdaBoost) with a Decision Tree based on the 

binary classification to enhance our prediction 

rate. 

 

             3) Our model is trained on the latest 

and large time aware samples of malware 

collected within recent years including the 

latest Android API level than state-of-the-art 

approaches. This research paper incorporates 

binary vector mapping for classification by 

allocating 0 to malicious applications and 1 for 

non-harmful and for predictive analysis of each 

application fed to the model implemented in 

the study. The technique eases the process by 

reducing fault predictive errors. Figure 2 shows 

the procedure for a better understanding of the 

concept applied later in our study. The paper 

passes both the categories of applications 

through static analysis and then is further 

processed for feature extraction. We presented 

features in 0’s and 1’s after extraction. Matrix 

displays the extraction characteristics of each 

application used in the dataset. There are major 

issues to be addressed to incorporate our 

strategy. High measurements of the features 

will make it difficult to identify malware in 

many real-world Android applications. Certain 

features overlap with innocuous apps and 

malware [13]. In comparison, the vast number 

of features will cause high throughput 

computing. Therefore, we can learn from the 

features directly derived from Android apps, 

the most popular and significant features. The 

paper implements prediction models and 

various computer ensemble teaching strategies 

to boost and enhance accuracy to resolve this 

problem [14]. Feature selection is an essential 

step in all machine-based learning approaches. 

The optimum collection of features will not 

only help boost the outcomes of tests but will 

also help to reduce the compass of most 

machine-based learning algorithms [15]. 

Studies have extensively suggested three 

separate methods for identifying android 

malware: static, interactive meaning 

dynamically, and synthetic or hybrid. Static 

analysis techniques look at the code without 

ever running it, so they're a little sluggish if 
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carried out manually and have to face a lot of 

false positives [16]. Data obfuscation and 

complex code loading are both significant 

pitfalls of the technique. That is why automated 

operation helps to achieve reliability, accuracy, 

and lesser time utilization [17]. Reverse 

engineer Android applications and extract 

features and do static analysis from them 

without having to execute them. This method 

entails examining the contents of two files: 

AndroidManifest.xml and classes.dex, and 

working on the file with the .apk extension. 

Feature selection techniques and classification 

algorithms are two crucial areas of feature- 

based types of fraudulent applications. Feature 

filtering methods are used to reduce the 

dimension size of a dataset. Any of the 

functions (attributes) that aren't helpful in the 

study are omitted from the data collection 

because of this. The remaining features are 

chosen by weighing the representational 

strength of all the dataset's features [18]. 

Parsing tools can help learn which permissions, 

packages or services an application offers by 

analyzing the AndroidManifest.xml file, such 

as permission android.permission.call phone, 

which allows an application to misuse calling 

abilities. The paper elaborates exactly what sort 

of sensitive API the authors could name by 

decoding the classes.dex file with the Jadx-gui 

disassembler [19]. In certain cases, including 

two permissions in a single app can signify the 

app's possible malicious attacks. For example, 

an application with RECEIVE SMS and 

WRITE SMS permissions can mask or 

interfere with receiving text messages [20] or 

applying sensitive API such as 

sendTextMessage() can also be harmful and 

lead to fraud and stealing. Until we started our 

main idea of the project. The fact explained 

that Android applications pose a lot of threats 

to its user because of the unnecessary programs 

compiled inside them and explained why it is 

necessary to automate the process of static 

analysis for the efficient detection of malware 

applications based on the extracted features. 

The rest of the paper is planned as follows. 

Related works are examined in Section II. 

Section III will present the design and method 

of our model. Section IV elaborates the 

assessment findings and future threats. The 

experiments and results will be dilated and 

performed in Sections V and VI. Section VII 

includes our research issues, recommendations, 

and conclusions for the future. 

Existing system 

The methods proposed in this related work 

contribute to key aspects and a higher 

predictive rate for malware detection. Certain 

research has focused on increasing accuracy, 

while others have focused on providing a larger 

dataset, some have been implemented by 

employing various feature sets, and many 

studies have combined all of these to improve 

detection rate efficiency. In [21] the authors 

offer a system for detecting Android malware 

apps to aid in the organization of the Android 

Market. The proposed framework aims to 
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provide a machine learning-based malware 

detection system for Android to detect malware 

apps and improve phone users' safety and 

privacy. This system monitors different 

permission-based characteristics and events 

acquired from Android apps and examines 

these features employing machine learning 

classifiers to determine if the program is 

goodware or malicious.  

 

The paper uses two datasets with collectively 

700 malware samples and 160 features. Both 

datasets achieved approximately 91% accuracy 

with Random Forest (RF) Algorithm. [22] 

Examines 5,560 malware samples, detecting 94 

% of the malware with minimal false alarms, 

where the reasons supplied for each detection 

disclose key features of the identified malware. 

Another technique [23] exceeds both static and 

dynamic methods that rely on system calls in 

terms of resilience. Researchers demonstrated 

the consistency of the model in attaining 

maximum classification performance and better 

accuracy compared to two state-of-the-art peer 

methods that represent both static and dynamic 

methodologies over for nine years through 

three interrelated assessments with satisfactory 

malware samples from different sources. 

Model continuously achieved 97% F1- 

measure accuracy for identifying applications 

or categorizing malware.  

 

 

[24] The authors present a unique Android 

malware detection approach dubbed 

Permission- based Malware Detection Systems 

(PMDS) based on a study of 2950 samples of 

benign and malicious Android applications. In 

PMDS, requested permissions are viewed as 

behavioral markers, and a machine learning 

model is built on those indicators to detect new 

potentially dangerous behavior in unknown 

apps depending on the mix of rights they 

require. PMDS identifies more than 92–94% of 

all heretofore unknown malware, with a false 

positive rate of 1.52–3.93%.  

 

The authors of this article [25] solely use the 

machine learning ensemble learning method 

Random Forest supervised classifier on 

Android feature malware samples with 42 

features respectively. Their objective was to 

assess Random Forest's accuracy in identifying 

Android application activity as harmful or 

benign. Dataset 1 is built on 1330 malicious 

apk samples and 407 benign ones seen by the 

author. This is based on the collection of 

feature vectors for each application. Based on 

an ensemble learning approach, Congyi 

proposes a concept in [26] for recognizing and 

distinguishing Android malware. 

Disadvantages 

 The system is not implemented 

MACHINE LEARNING 

ALGORITHM AND ENSEMBLE 

LEARNING. 
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 The system is not implemented Reverse 

Engineered Applications 

characteristics. 

 

 

Proposed System 

 

1) We present a novel subset of features for 

static detection of Android malware, which 

consists of seven additional selected feature 

sets that are using around 56000 features from 

these categories. On a collection of more than 

500k benign and malicious Android 

applications and the highest malware sample 

set than any state-of-the-art approach, we 

assess their stability. The results obtain a 

detection increase in accuracy to 96.24 % with 

0.3% false-positives. 

 

 2) With the additional features, we have 

trained six classifier models or machine 

learning algorithms and also implemented a 

Boosting ensemble learning approach 

(AdaBoost) with a Decision Tree based on the 

binary classification to enhance our prediction 

rate. 3) Our model is trained on the latest and 

large time aware samples of malware collected 

within recent years including the latest Android 

API level than state-ofthe-art approaches. 

 

 

Advantages 

 The proposed system chooses 

the characteristics based on their 

capability to display all data 

sets. Enhanced efficiency by 

reducing the dataset size and the 

hours wasted on the 

classification process introduces 

an effective function selection 

process. 

 

 The system used in this study 

also incorporates larger feature 

sets for classification. Although 

this problem arises in machine 

learning quite often to some 

extent choosing the type of 

model for detection or 

classification can highly impact 

the high dimensionality of the 

data being used. 

 

 
 

Modules 

Service Provider 

 

In this module, the Service Provider has 

to login by using valid user name and 

password. After login successful he can 

do some operations such as           

Login, Browse App Data Sets and Train 

& Test,  View Mobile Apps Trained 

and Tested Accuracy in Bar Chart, 

View Mobile App Trained and Tested 

Accuracy Results, View Malware 

Prediction Type, View Malware 
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Prediction Ratio, Download Predicted 

Data Sets, View Malware Prediction 

Ratio Results, View All Remote Users. 

 

View and Authorize Users 

In this module, the admin can view the 

list of users who all registered. In this, 

the admin can view the user’s details 

such as, user name, email, address and 

admin authorizes the users. 

 

Remote User 

In this module, there are n numbers of 

users are present. User should register 

before doing any operations. Once user 

registers, their details will be stored to 

the database.  After registration 

successful, he has to login by using 

authorized user name and password. 

Once Login is successful user will do 

some operations like  REGISTER AND 

LOGIN, PREDICT MALWARE 

DETECTION TYPE, VIEW YOUR 

PROFILE. 

 

Decision tree classifiers 

 
Decision tree classifiers are used successfully 

in many diverse areas. Their most important 

feature is the capability of capturing 

descriptive decision making knowledge from 

the supplied data. Decision tree can be 

generated from training sets. The procedure 

for such generation based on the set of 

objects (S), each belonging to one of the 

classes C1, C2, …, Ck is as follows: 
 

Step 1. If all the objects in S belong to the 

same class, for example Ci, the decision tree 

for S consists of a  leaf labeled with this class 

Step 2. Otherwise, let T be some test with 

possible outcomes O1, O2,…, On. Each 

object in S has one outcome for T so the test 

partitions S into subsets S1, S2,… Sn where 
each object in Si has outcome Oi for T. T 

becomes the root of the decision tree and for 

each outcome Oi we build a subsidiary 

decision tree by invoking the same 

procedure recursively on the set Si. 
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Results

 

 

 

 

CONCLUSION 

 

In this research, we devised a framework that 

can detect malicious Android applications. The 

proposed technique takes into account various 

elements of machine learning and achieves a 

96.24% in identifying malicious Android 

applications. We first define and pick functions 

to capture and analyze Android apps' behavior, 

leveraging reverse application engineering and 

AndroGuard to extract features into binary 

vectors and then use python build modules and 

split shuffle functions to train the model with 

benign and malicious datasets. Our 

experimental findings show that our suggested 

model has a false positive rate of 0.3 with 96% 

accuracy in the given environment with an 

enhanced and larger feature and sample sets. 

The study also discovered that when dealing 
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with classifications and high-dimensional data, 

ensemble and strong learner algorithms 

perform comparatively better. The suggested 

approach is restricted in terms of static 

analysis, lacks sustainability concerns, and fails 

to address a key multi collinearity barrier. In 

the future, we'll consider model resilience in 

terms of enhanced and dynamic features. The 

issue of dependent variables or high inter 

correlation between machine algorithms before 

employing them is also a promising field. 
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