
 

 

  



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

7 
 

The Analysis Of Stochastic Number Generator Using 

HDL Implementation 
 

G.Krishnaveni 1, P.Priyanka 2, P.Sai Lakshmi 3, N.Ankitha 4 

#1M. Tech, (Ph.D) 

#2,#3,#4 Students, Dept of Electronics and Communication Engineering,BWEC, Bapatla,Andhra 

Pradesh,India 

 

 

ABSTRACT_ For stochastic computing (SC) circuits to be accurate and area-efficient, stochastic number 

generators (SNGs) must be designed efficiently. SNGs based on linear feedback shift registers (LFSRs) are 

widely used in SC. On the other hand, we suggest a novel design strategy to minimize the size of SNGs: 

distributing among several SNGs a mix of negations and permutations of the output of a single LFSR. This 

method produces SC circuits with improved accuracy by providing SNGs with least average SC correlation 

(SCC) without requiring any extra hardware overhead... When a 10-bit LFSR is shared between two SNGs, our 

method produces stochastic bit streams with an average SCC that is 50% lower than the prior state-of-the-art 

work. The proposed design space for a 𝒏-bit LFSR includes 𝒏! × 2 𝒏 designs. Nevertheless, searching the entire 

area for the design with the least SCC becomes unfeasible when 𝒏 > 7. We offer an optimized search algorithm 

to tackle this problem. When 𝒎 < 𝒏, our optimized search technique can locate a set of 𝒎 distinct designs with 

least SCC values. This solves the issue of looking through the whole design area and makes it possible to 

explore design possibilities quickly. 

Keywords—Stochastic number generator, Stochastic computing, Linear feedback shift 

1.INTRODUCTION 

Stochastic registering (SC) circuits perform 

calculations on bitstreams with diminished 

equipment intricacy [1]. Contrasted with customary 

double registering (BC), SC gives different benefits 

including diminished equipment intricacy and 

faulttolerant figuring. In light of these benefits, SC 

has been thought of as an option in contrast to BC 

in various applications, for example, picture 

handling, brain organizations, and computerized 

channels. A SC circuit utilizes stochastic number 

generators (SNGs) to change parallel numbers over 

completely to their comparing arbitrary bitstreams. 

In SC circuits, SNGs consume altogether more 

region contrasted with processing parts. 

Specifically, for applications, for example, picture 

handling and advanced channels, SC circuits 

require a few SNGs which consume around 80% of 

the complete region [4]. Moreover, the connection 

between's bitstreams produced by various SNGs in 

a SC circuit can amazingly lessen its computational 

precision. Subsequently, the plan of low-region 

SNGs that can produce low-associated bitstreams is 

fundamental for having region proficient and 

precise SC circuits. In this paper, we propose 

another plan space for low-region SNGs in view of 

straight criticism shift register (LFSR)- sharing 

procedure [4] with no equipment above. The plan 

space utilizes stages of a LFSR's results and their 

supplements to produce different bitstreams with 

least SC connection. For 𝑛 = 10, the proposed 

SNGs create bitstreams with half less SC 

connection contrasted with earlier work with a 

similar equipment intricacy. We exhibit that 

applying the proposed strategy to plan SC circuits 

for computerized channels, edge recognition, and 

picture division applications works on their 

computational precision. In the following segment, 

we make sense of the inward circuit of SNG 7s, an 

action to assess SC connection for their bitstreams, 

and related earlier work. The proposed plan space 

for effective LFSR-sharing-based SNGs and a 

streamlined calculation for tracking down the plan 

for two SNGs with least SC connection. We sum 

up the calculation for multiple SNGs. We assess 

our methodology for a few applications lastly finish 

up the paper. 

STOCHASTIC figuring (SC) has arisen as an 

offbeat strategy for performing calculations by 

rationale circuits [1]. Instead of performing 

calculation on deterministic double numbers, SC 

circuits are intended to handle irregular piece 

streams. The information and result are addressed 

by bit streams and their qualities are encoded as the 

probabilities of seeing 1's in the piece streams. 

Obviously, the qualities are restricted in the unit 

span [0, 1], since probabilities can't be past the unit 

stretch. Contrasted with deterministic twofold 



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

8 
 

processing, SC gives a few benefits, including 

decreased equipment intricacy and issue lenient 

registering. In light of these benefits, SC has been 

viewed as a fitting option in contrast to parallel 

registering in various applications, for example, 

low-thickness equality check (LDPC) disentangling 

[2], picture handling [3], brain networks [4], [5], 

and advanced channels [6], [7]. One principal 

benefit of SC is exceptionally low equipment 

intricacy could bring about cost-proficient 

processing circuits. The most well-known method 

for exhibiting the low equipment cost of SC is its 

execution of fundamental tasks, or at least, 

augmentation and expansion. Fig. 1(a) shows a 

straightforward AND door executing duplication in 

SC. For the AND entryway, the result is 1 just 

when the two data sources An and B are 1. Thusly, 

the likelihood of having 1 in the result bit stream is 

the duplication of the probabilities of having 1 in 

every one of the information bit streams, that is to 

say, P(C = 1) = P(A = 1)× P(B = 1), that is, c = a × 

b. Essentially, Fig. 1(b) shows a 2-input 

multiplexer figuring scaled expansion. For the 

multiplexer, yield C is 1 when S is 0 and An is 1 or 

when S is 1 and B is 1. Hence, P(C = 1) = (1 − P(S 

= 1)) × P(A = 1) + P(S = 1) × P(B = 1), that is, c = 

(1 − s) × a + s × b. 

A stochastic number generator (SNG) is a 

fundamental piece of any SC circuit. A SC circuit 

utilizes SNGs to change over double numbers into 

their comparing irregular piece streams. They 

create arbitrary piece streams with probabilities of 

delivering 1's equivalent to their relating paired 

numbers. SNGs assume a focal part in the 

proficiency of a SC circuit for two reasons. In the 

first place, for SC circuits, the size of a SNG part is 

wonderful concerning the figuring part. This issue 

turns out to be more basic for applications with SC 

circuits that require numerous SNGs, for example, 

serious level advanced sifting and picture handling 

calculations. As a matter of fact, for a few SC 

plans, SNG circuits consume around 80% or even 

90% of the complete region [8], [9]. Second, the 

nature of the irregular numbers created by SNGs 

can fundamentally influence the computational 

precision of the SC plans, and relationship among 

arbitrary piece streams is a wellspring of error in 

SC circuits. In this way, getting region effective 

and low-corresponded SNGs is a significant plan 

challenge for SC circuits. 

Because of this test, the commitments of this article 

are the accompanying. 

1) Presenting another stage based plan space for 

sharing an irregular number source (RNS) among a 

few SNGs. The plan space yields minimal expense 

and low-corresponded SNGs. Contrasted with 

SNGs with a similar equipment intricacy, the 

proposed SNGs produce irregular piece streams 

with lower cross connection. 

2) Displaying the variety of SC connection for the 

proposed plan space and introducing a scanning 

calculation for tracking down the changes with 

least relationship. 

2.LITERATURE SURVEY 

2.1 B. R. Gaines, "Stochastic computing" AFIPS 

spring joint computer conference. ACM, 

pages149–156, 1967.  

We give a short overview of stochastic computing 

(SC) and its uses. SC computes with randomized 

bit-streams that loosely resemble the neural spike 

trains of the brain. Its key feature is the use of low-

cost and low-power logic elements to implement 

complex numerical operations in a highly error-

tolerant fashion. These advantages must be 

weighed against SC's inherently slow computing 

speed and low precision. Although studied 

sporadically since its invention in the 1960s, SC 

has regained interest recently as potentially suited 

to some emerging nanotechnologies, and to 

applications such as ECC decoding and biomedical 

image processing. However, a number of major 

challenges must be overcome if this potential is to 

be fully realized.  

2.2 P. Li, D. J. Lilja, W. Qian, K. Bazargan, and 

M. D. Riedel, “Computation on Stochastic 

Bitstreams Digital Image Processing Case 

Studies,” IEEE Trans. VLSI Syst., vol. 22, no. 3, 

pp. 449–462, Mar. 2014.  

Maintaining the reliability of integrated circuits as 

transistor sizes continue to shrink to nanoscale 

dimensions is a significant looming challenge for 

the industry. Computation on stochastic bit streams, 

which could replace conventional deterministic 

computation based on a binary radix, allows similar 

computation to be performed more reliably and 

often with less hardware area. Prior work discussed 

a variety of specific stochastic computational 

elements (SCEs) for applications such as artificial 

neural networks and control systems. Recently, 

very promising new SCEs have been developed 

based on finite-state machines (FSMs). In this 

paper, we introduce new SCEs based on FSMs for 

the task of digital image processing. We present 

five digital image processing algorithms as case 

studies of practical applications of the technique. 

We compare the error tolerance, hardware area, and 

latency of stochastic implementations to those of 



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

9 
 

conventional deterministic implementations using 

binary radix encoding. We also provide a rigorous 

analysis of a particular function, namely the 

stochastic linear gain function, which had only 

been validated experimentally in prior work. 

2.3 H. Ichihara, and T. Sugino, “Compact and 

accurate digital filters based on stochastic 

computing,” IEEE Transactions on Emerging 

Topics in Computing, 2019. Stochastic computing 

(SC), which is an approximate computation with 

probabilities, has attracted attention as an 

alternative to deterministic computing. In this 

paper, we discuss a design method for compact and 

accurate digital filters based on SC. Such filter 

designs are widely used for various purposes, such 

as image and signal processing and machine 

learning. Our design method involves two 

techniques. One is sharing random number sources 

with several stochastic number generators to reduce 

the areas required by these generators. Clarifying 

the influence of the correlation around multiplexers 

(MUXs) on computation accuracy and utilizing 

circular shifts of the output of random number 

sources, we can reduce the number of random 

number sources for a digital filter without losing 

accuracy. The other technique is to construct a 

MUX tree, which is the principal part of an SC-

based filter. We formulate the correlation-induced 

errors produced by the MUX tree, and then propose 

an algorithm for constructing an optimum MUX 

tree to minimize the error. Experimental results 

show that the proposed design method can derive 

compact (approximately 70 percent area reduction) 

SC-based filters that retain high accuracy.  

3.PROPOSED SYSTEM 

We explain the proposed method for 𝑛 = 4. We 

share the LFSR in Fig 1(a) between two 

comparators, CMP1 and CMP2, to build two 

SNGs, SNG1 and SNG2. Notice that, with no 

additional hardware, for each FF of the LFSR the 

output and its complement are both available to be 

used. In our approach, we connect the outputs of 𝐿1 

, 𝐿2 , 𝐿3 , and 𝐿4 to the 𝑟1 , 𝑟2 , 𝑟3 , and 𝑟4 inputs 

of CMP1, respectively, to form SNG1. We then 

choose four signals from the eight available signals 

(i.e., 𝐿1 , 𝐿2 , 𝐿3 , 𝐿4 , and their complements), and 

connect a permutation of the chosen four signals to 

the four inputs of CMP2 for SNG2. To find the 

connection pattern that provides minimum 

𝑆𝐶𝐶𝑎𝑣𝑔, we need to search all eligible 

combinations of four signals coming from an LFSR 

and their permutations. Only combinations that can 

generate correct bitstreams (i.e. bitstreams with 

correct number of 1’s at the output of an SNG) are 

eligible. For 𝑛 = 4, such combinations should 

produce 15 (i.e., 2 𝑛 − 1) different output numbers 

in each period. This requirement leads to the 

restriction that only one signal from every FF can 

be included in each combination: either an FF’s 

output or its complement (not both). For example, 

when we consider the combination of 𝐿1 to 𝐿4 , 

and not any of their complements), a permutation 

of numbers between 1 and 15 is fed to the 

connected CMP circuit and number 0 is excluded 

because it is not generated by the LFSR. Similarly, 

when we consider the combination of 𝐿2 to 𝐿4 and 

the complement of 𝐿1 , (i.e., "𝐿4𝐿3𝐿2𝐿1    ”), a 

permutation of numbers 0 and 2 to 15 is fed to the 

connected CMP component. That is, from numbers 

between 0 and 15, number 1 is excluded. It is easy 

to show that a different number is excluded for 

every other combination.  

In general, for an n-bit LFSR, there are 2 𝑛 

different combinations and for each combination, a 

number between 0 and 2 𝑛 − 1 is excluded while a 

permutation of other numbers is fed to the CMP 

component. Since there are 2 𝑛 different 

combinations for an 𝑛-bit LFSR and 𝑛! 

permutations for each combination, the proposed 

design space has 2 𝑛 × 𝑛! eligible designs, that is 2 

𝑛 times larger than the design space proposed in 

[6]. The new design space can achieve 𝑆𝐶𝐶𝑎𝑣𝑔 

values lower than the minimum 𝑆𝐶𝐶𝑎𝑣𝑔 from [6]. 

B. Exploring the Design Space To find the design 

with minimum 𝑆𝐶𝐶𝑎𝑣𝑔, a straightforward 

approach is to calculate 𝑆𝐶𝐶𝑎𝑣𝑔 values for all 

possible designs and choose the minimum value. 

However, for this approach computational 

complexity and required memory increase 

exponentially as 𝑛 becomes larger. In fact, for 𝑛 > 

7, an exhaustive search for scanning the whole 

design space for finding the minimum 𝑆𝐶𝐶𝑎𝑣𝑔 is 

intractable. To overcome this problem, we propose 

a new approach. We evaluate all the possible 

designs for 𝑛 = 3 to 𝑛 = 6 and extract the pattern of 

𝑆𝐶𝐶𝑎𝑣𝑔. Fig. 2 shows the behavior of 𝑆𝐶𝐶𝑎𝑣𝑔 for 

𝑛 = 3 to 𝑛 = 6. The 𝑥 axis shows all permutations 

for all combinations. From left to right for this axis, 

the combinations are sorted such that their 

excluded numbers increase from 0 to 2 𝑛 − 1. For 

each combination, permutations are in the reverse 

lexicographic order. The red dots in Fig. 2 mark the 

𝑆𝐶𝐶𝑎𝑣𝑔 values for the first permutation of each 

combination. As we can see, for all combinations, 

the first permutation (in the reverse lexicographic 

order) provides a lower 𝑆𝐶𝐶𝑎𝑣𝑔 value compared to 

the other permutations. Thus, the design with 

minimum 𝑆𝐶𝐶𝑎𝑣𝑔 is the first permutation of one of 

the combinations for an LFSR’s outputs. In fact, 

this observation is supported by [7], where it is 

shown that for a sequence, the reverse permutation 



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

10 
 

(i.e., the first in reverse lexicographic order) has 

the greatest distance (lowest cross correlation). 

We optimize our search algorithm based on this 

observation by calculating 𝑆𝐶𝐶𝑎𝑣𝑔 only for the 

first permutations and finding their minimum. 

This optimization can significantly reduce the 

computational complexity of our search 

algorithm; instead of 2 𝑛 × 𝑛! designs, the 

algorithm searches 2 𝑛 designs. Combination 𝑘 

means that the inverted outputs of flip-flops are 

used for bits which are ‘1’ in the binary 

representation of 𝑘. In other words, we can 

imagine the output of LFSR is XORed with the 

binary value of 𝑘 before it is used. For example, 

if 𝑘 = 2 and 𝑛 = 4, combination 𝑘 means 

"𝐿4𝐿3𝐿2    𝐿1 ” is used. For an 𝑛-bit LFSR, the 

output for combination 𝑘 and output for 

combination (2 𝑛 − 1)− 𝑘 are complement of each 

other and their sum is 2 𝑛 −1. For example, if 𝑛 = 

4, outputs for combination 2 and 13 are 

complement and their sum is 15. Therefore, for an 

𝑛-bit LFSR the pattern of generated numbers for 

combination (2 𝑛 − 1)− 𝑘 is the same as 

combination 𝑘, but flipped. This means that the 

generated bitstreams from two SNGs using these 

combinations are inverted of each other and the 

𝑆𝐶𝐶𝑎𝑣𝑔 value for combination 𝑘 and combination 

(2 𝑛 − 1)− 𝑘 is the same. This is because the 

average of absolute values of ( , 𝑠 ′ 𝑗), for 𝑖,𝑗 ∈ 

{0,1, . . . , (2 𝑛 − 1)}, are used for the calculation of 

𝑆𝐶𝐶𝑎𝑣𝑔 in Equation (2). Fig. 2 shows that the 

𝑆𝐶𝐶𝑎𝑣𝑔 values of the first permutations for 

combination 𝑘 and combination (2 𝑛 − 1)− 𝑘 are 

the same. Therefore, there are two combinations 

with minimum 𝑆𝐶𝐶𝑎𝑣𝑔 and the algorithm can find 

minimum 𝑆𝐶𝐶𝑎𝑣𝑔 values by searching only one 

half of the design space. This optimization speeds 

up the searching algorithm twice. The pseudocode 

in Algorithm 1 represents our optimized searching 

algorithm. In this algorithm, the direct connection 

of an LFSR’s output, i.e., "𝐿𝑛 … 𝐿2𝐿1 " is 

considered as SNG1. In a for-loop, different 

combinations for the first permutation of the LFSR 

are considered as SNG2. The algorithm uses "𝐿1𝐿2 

… 𝐿𝑛" as the first permutation. In order to search 

all 2 𝑛 possible combinations, the algorithm 

performs bitwise XOR between the first 

permutation and the 𝑛-bit binary representation of 

𝑘, where 𝑘 varies from 0 to 2 𝑛 −1 inside the for-

loop. Notice that due to the symmetry of 𝑆𝐶𝐶𝑎𝑣𝑔 

(our second observation), the optimized algorithm 

searches only the first half of the design space and 

𝑘 varies from 0 to (2 𝑛−1 −1). In every iteration of 
the for-loop, if the 𝑆𝐶𝐶𝑎𝑣𝑔 between SNG1 and 

SNG2 is less than 𝑆𝐶𝐶𝑚𝑖𝑛, the algorithm updates 

𝑆𝐶𝐶𝑚𝑖𝑛by the 𝑆𝐶𝐶𝑎𝑣𝑔. The algorithm finds the 

combination index (i.e., 𝑘𝑚𝑖𝑛) for the minimum 

𝑆𝐶𝐶𝑎𝑣𝑔 (i.e., 𝑆𝐶𝐶𝑚𝑖𝑛) in the first half of the 

design space. This index is returned as 1𝑠𝑡_𝑘𝑚𝑖𝑛. 

Due to the existent symmetry, the combination 

index for the minimum in the second half (i.e., 

2𝑛𝑑_𝑘𝑚𝑖𝑛) is obtained by bitwise negation of the 

binary representation of 𝑘𝑚𝑖𝑛. Algorithm 1 returns 

the minimum of 𝑆𝐶𝐶𝑎𝑣𝑔 and its combination 

indices as 𝑆𝐶𝐶𝑚𝑖𝑛, 1𝑠𝑡_𝑘𝑚𝑖𝑛, and 2𝑛𝑑_𝑘𝑚𝑖𝑛, 

respectively. Table II lists 𝑆𝐶𝐶𝑚𝑖𝑛, 1𝑠𝑡_𝑘𝑚𝑖𝑛, and 

2𝑛𝑑_𝑘𝑚𝑖𝑛 for 𝑛 = 4 to 𝑛 = 8. Using the 

combination indices obtained from Algorithm 1, 

we design the connection circuit for the 

LFSRsharing SNGs. Notice that having two 

different possible combinations for 𝑆𝐶𝐶𝑚𝑖𝑛 means 

that there are two different designs that achieve 

minimum 𝑆𝐶𝐶𝑎𝑣𝑔. Fig. 3 shows both possible 

proposed circuits for 𝑛 = 4, and one of the two 

possible circuits for 𝑛 = 8. 

  

 

 

 

FIG. Proposed structure for sharing an LFSR with 

two SNGs based on output permutation(n=4 & 

n=8) 

4.RESULTS AND DISCUSSION 



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

11 
 

4.1 Simulation Results of LFSR_PUF: 

 

 

Sim.Result. N=4 & N=8 

Area: 

N=4 

N=8 

Delay: 



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

12 
 

N=4 

N=8 

RTL Schematic: 

 

Technology Schematic: 



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

13 
 

 

5.CONCLUSION 

We suggest an LFSR-sharing design space for low 

correlated and area-efficient SNG circuits. The 

permutation of every combination of the output bits 

of an LFSR and their logical complements makes 

up the design space. We examine how 𝑆𝐶𝐶𝑎𝑔 

behaves in this design space. Our findings 

demonstrate that the least amount of cross 

correlation for an LFSR's output can be obtained by 

combining two of its initial permutation in the 

opposite lexicographic order. Our approach 

produces SNGs with lower cross correlation values 

when compared to previous work with the same 

hardware complexity, i.e., the circular shifting and 

permutation-only methods. 

We provide an efficient search strategy for locating 

LFSR-sharing-based SNG designs with the least 

amount of cross correlation, given the large 

expansion in the design space throughout previous 

work. In comparison to previous methods, we gain 

greater computational accuracy with reduced 

hardware complexity when we use the suggested 

SNGs in the SC-based implementation of many 

applications, as demonstrated by the results. Even 

though we were able to increase the search 

algorithm's speed inside the suggested design 

space, there is still room for improvement. 

REFERENCES: 

[1] B. R. Gaines, "Stochastic computing" AFIPS 

spring joint computer conference. ACM, 

pages149–156, 1967.  

[2] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. 

D. Riedel, “Computation on Stochastic Bitstreams 

Digital Image Processing Case Studies,” IEEE 

Trans. VLSI Syst., vol. 22, no. 3, pp. 449–462, 

Mar. 2014.  

[3] H. Ichihara, and T. Sugino, “Compact and 

accurate digital filters based on stochastic 

computing,” IEEE Transactions on Emerging 

Topics in Computing, 2019. 

[4] H. Ichihara, "Compact and accurate stochastic 

circuits with shared random number sources." IEEE 

32nd International Conference on Computer 

Design (ICCD), pp. 361-366, 2014.  

[5] A. Alaghi, and J.P. Hayes, “Exploiting 

Correlation in Stochastic Circuit Design,” Proc. Intl 

Conf. on Computer Design (ICCD), pp. 39–46, 

Oct. 2013.  

[6] S. A. Salehi, "Low-Cost Stochastic Number 

Generators for Stochastic Computing," in IEEE 

Transactions on Very Large Scale Integration 

(VLSI) Systems, vol. 28, no. 4, pp. 992-1001, April 

2020, doi: 10.1109/TVLSI.2019.2963678.  

[7] Siegel, S. and Castellan, N. J. Nonparametric 

Statistics for the Behavioral Sciences. McGraw-

Hill, 1988  

[8] P. Eades, M. Hickey and R. Read, Some 

Hamilton Paths and a Minimal Change Algorithm, 

Journal of the ACM, 31 (1984) 19–29.  

[9] T. Hough and F. Ruskey, An Efficient 

Implementation of the Eades, Hickey, Read 

Adjacent Interchange Combination Generation 



                                ISSN2321-2152 

            www.ijmece .com  

                      Vol 12, Issue.2 April 2024 

 

14 
 

Algorithm, Journal of Combinatorial Mathematics 

and Combinatorial Computing, 4 (1988), 79–86.  

[10] Sevaux, M. and Sorensen, K. “Permutation 

distance measures for memetic algorithms with 

population management.” Metaheuristics 

International Conference, 2005.  

[11] Ronald, S. “More distance functions for order-

based encodings.” Proc IEEE Conference on 

Evolutionary Computation, pages 558–563, 1998.  

[12] P. Li, and D. J. Lilja, “Using Stochastic 

Computing to Implement Digital Image Processing 

Algorithms,” Proc. ICCD, pp. 154–161, 2011. 

 

 

 


