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Abstract:  

In this work, we explore the associated observability problems with the overarching goal of localizing 

single and many AUVs utilizing range measurements. Global Navigation Satellite Systems and other 

geolocation systems are rendered ineffective underwater due to the absorption of electromagnetic 

radiation. Due to the high levels of error introduced by sensor bias and drift, AUV localization using 

dead reckoning techniques or cheap motion sensor units is not feasible. Trilateration algorithms are 

often used in localization systems to determine the distance between an AUV and a fixed network of 

transponders. Acoustic sensors play a key role in this process. These methods are costly and time-

consuming to calibrate, and they can only detect AUVs within the region specified by the geometry of 

the transponders. An effective alternative to using mere transponder distance alone has been 

developed in recent years for use with AUVs. In this method, the onboard motion sensors of the AUV 

measure a variety of parameters, including depth, speed, and acceleration. Incorporating sound 

sensors into the system to allow AUVs to gauge their distance from one another is one potential next 

step for this concept. Given these developments, this study shows how the same mathematical model 

may manage relative and absolute vehicle localization. To further investigate how various forms of 

motion impact AUV localization performance, it adjusts observability ideas originally developed for 

nonlinear systems. We show that our proposed observability measure may improve the performance 

of an Extended Kalman filter by modeling this effect and testing it using a real-world marine vehicle. 

A modification will be made to the status of the filter observer as you drive. 

 

Key words : We find terms like "observability metric," "submersible," and "range-only 

localization" among them. 

Introduction 

Autonomous underwater vehicles (AUVs) 

have gained popularity in the last several 

decades and are currently used extensively 

across many sectors, including as the military, 

academia, and the tourist sector. Helping 

marine scientists with their oceanographic 

environmental monitoring efforts is only one 

of many potential applications for autonomous 

underwater vehicles (AUVs). For AUVs to 

complete their missions autonomously, 

precision locating skills are critical. While 

GNSSs and similar localization systems are 

known to work effectively above water, their 

utility is severely restricted when the vehicles 

are submerged since electromagnetic radiation 

is attenuated when employed underwater. To 

precisely determine an AUV's position, dead 

reckoning integrates inertial and velocity data. 

Nevertheless, number-wise, because of the 

Because dead reckoning accounts for sensor 

bias, drift, noise, and noise, it is only practical 

for shallow dives. But it may be swayed by 

outside forces and faulty models. Frequent 

surface visits may be necessary for the AUV to 

maintain an up-to-date  
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GNSS position. Another common method for 

underwater localization is to use auditory 

equipment to determine the relative bearing 

and height of locations, as well as the 

distances between them. Complex jobs have 

made extensive use of commercially available 

solutions such as Ultra-Short Baseline, Long 

Baseline, and Short Baseline systems. Long 

Baseline (LBL) systems use regularly spaced 

transponders dropped to a certain depth for 

acoustic localization. The autonomous 

underwater vehicle (AUV) uses the time it 

takes for the reflected sound waves to return to 

its receiver after requesting the transponders to 

find the distance. The trilateration approach is 

then used to find the AUV's position. In Short 

Baseline (SBL) systems, the transducers are 

placed on top of a surface vessel and are 

separated by several meters. By interacting 

with a transponder attached to the submerged 

AUV, the surface component is responsible for 

triangulating its position. A compact, self-

contained device put aboard a support vessel 

measures the relative phases of the signals 

given by the surface segment and stores the 

findings. This device is used to estimate the 

locations of an AUV. The third option includes 

communicating the predicted position of the 

AUV. A new approach to AUV localization 

has evolved, using a single transponder 

(beacon) and transducer, with the goal of 

streamlining processes without increasing 

sensor costs. The AUV may utilize this 

technique to find itself instead of depending on 

data from a central transmitter. A depth sensor, 

Doppler log, and inertial measurement unit are 

just a few of the many auxiliary sensors used 

by the AUV. Recent publications [1-4] 

demonstrate that this localization problem—

which goes by many names, such as range-

only localization and single beacon 

localization—is getting a lot of attention. This 

study introduces an observability metric for 

the single beacon localization problem by 

using the local weak observability properties 

of a chosen non-linear system. Therefore, in 

order to make sure everything is clear and 

comprehensive, we provide a brief summary 

of important prior work in the subject that 

addresses the problems mentioned. 

Modelling the Observability of Systems 

 First, we take a look at the problem of relative 

localization between two AUVs. The North 

East Down (NED) convention specifies an 

inertial, earth-fixed reference frame I, and a 

frame v,i with an origin fixed at the centroid of 

the i-th vehicle (i = 1, 2) and in parallel to I 

(see Figure 1). From here on, we shall say that 

vv,1 = dxv,1/dt and vv,2 = dxv,2/dt, where IR3 

is the coordinate system of vehicle 1 and xv,2 

is the coordinate system of vehicle 2, and that 

inertial velocities vv,1 and vv,2 are equal. 

Here, x = xv,2xv,1 represents the system state 

and v = vv,2vv,1 represents the relative 

velocities of the vehicles. Our working 

assumption is that inertial sensors can measure 

not only the distance between cars but also 

their velocities and depths relative to one 

another. The first-order kinematic model of the 

vehicles' relative motion is represented by the 

following notation: x is the current state, v is 

the input, and y IR2 is the observable output 

vector. It is a function, h1, of the two vehicles' 

distance from each other in geometric units 

(kaki) and the depth difference (x3).  

 

 

Figure 1. Reference systems: ΣI is the 

inertial, earth-fixed frame and Σv,i are the 

moving frame with the origin fixed in the i-th 

vehicle (i = 1, 2). 

In the literature, the range-based localization 

problem is usually studied in 2D. Here, we 

start by explicitly including a third dimension 

(depth) to fully capture manoeuvres that 

include diving. Once we have shown that the 

vertical component does not affect the 

observability of the system, we then move on 

to the 2D case. Notice also that, since the 

above model is defined in terms of relative 

motions, it captures the kinematics of both 

single beacons, as well as relative multi-
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vehicle localization problems. To discuss the 

observability properties of the system in 

Equation (1), we first recall some basic 

observability concepts for non-linear systems, 

summarize important local weak observability 

properties and describe an observability rank 

condition; we then apply the latter condition to 

our specific case. 

Single Beacon Localization:  

Numerical Simulations This section presents 

the results of numerical simulations that 

illustrate the effectiveness of the observability 

index proposed in assessing the performance 

that can be obtained with a single beacon 

localization algorithm. Specifically, we 

consider a single-beacon localization 

algorithm that is obtained by implementing an 

Extended Kalman Filter for a discrete-time 

version of Equation (5), and we evaluate its 

performance under different operational 

conditions (e.g., different vehicle speeds and 

trajectories) in light of the proposed metric. 

The system state equation is assumed as:  

 

where wk and µk are process and 

measurement noises, assumed as zero-mean 

Gaussian noise with  

 

is the sample time. An EKF filter for Equation 

(16) was implemented using the following 

standard equations: (1) Time update of state 

and estimation error covariance: 

 

(2) Measurement updates of state and 

estimation error covariance: 

 

here Hk is the linearization of the output 

measurement equation computed for x = xˆ − 

k+1, i.e., Hk = xˆ −T k+1. The covariance 

matrix of the process and measurement noises 

are assumed to be Rw = diag([0.1 0.1]) (where 

diag([a1 . . . an]) is a diagonal matrix whose 

diagonal entries starting in the upper left 

corner are a1, . . . , an) and Rµ = 5, 

respectively, while the EKF covariance matrix 

is initialized as P + 0 = diag([2 2]). In the first 

simulated scenario, the vehicle was 

commanded to execute a lawn-mowing 

maneuver (consisting of a succession of 

orthogonal line segments). The speed of the 

vehicle was kept constant and equal to 1 m/s 

along each segment, except when required to 

change orientation during the transition from 

one to the next segment; in the latter case, the 

vehicle was supposed to have the capability to 

rotate in place. Figure 5 shows the path 

followed by the vehicle and its position as 

estimated using the EKF; the figure also shows 

the ellipsoid corresponding to the EKF 

covariance matrix along the path. 

 

Figure 2. Real (blue) and estimated (red) 

path of a vehicle moving along orthogonal 

segments of a line using an Extended 

Kalman Filter (EKF) and range 

measurements from a single beacon in 

position [0, 20] m. The ellipses represent the 

covariance matrix of the EKF, while the red 

star represents the position of the 

transponder. 

Figure 2 shows the time-evolution of different 

variables of interest: the norm of the 

estimation error, the distance of the vehicle 

from the transponder, the eigenvalues of the 

EKF covariance matrix and the observability 

index, C −1 . Notice that the lower eigenvalue 

of the EKF covariance matrix quickly 
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decreases to a value related to the range 

measurement covariance; the higher 

eigenvalue, howeverexhibits more complicated 

dynamics related to the AUV path and 

decreases when the observability index takes 

large values. The intervals where the 

observability index, C −1 , is equal to zero 

correspond to the rotation of the AUV in 

place, when it moves from one segment to the 

following. 

 

Figure 3. Variables of interest related to the 

paths in Figure 5: observability index C −1 , 

eigenvalues of the EKF covariance matrix, 

distance from the vehicle to the transponder 

and the norm of the estimation error. 

We performed two sets of simulations with the 

vehicle driving around circumferences 

centered on the transponder to further illustrate 

the connection between the observability index 

and the filter's performance. The first round of 

simulations included driving the vehicle at 

varying speeds (0.5 m/s, 1 m/s, 1.5 m/s, and 2 

m/s), which correspond to different values of 

the observability index (see Figure 7 for the 

pathways). Similar remarks apply to the higher 

eigenvalues of the EKF covariance matrix, as 

shown in Figure 8, indicating that the estimate 

error reduces more slowly along the route with 

a lower instantaneous observability index 

(solid line, conducted at the lowest speed). 

In-Vehicle Tests  

Experiments Here we report the outcomes of 

our attempts to put the observability index 

presented in this work to the test in a realistic 

setting. Beacon detection, which may be 

thought of as the inverse issue of single beacon 

localization discussed above, is the topic of 

this article. In this case, the vehicle already 

knows its location and must estimate the 

beacon's position using range measurements. 

The field experiments were conducted using 

an autonomous marine vehicle fitted with an 

acoustic range device that could determine its 

distance from an acoustic transponder 

anchored to the bottom at a known place. The 

trials were conducted in Lisbon, Portugal, in 

the Nations Park (the former location of Expo 

98) (Lat: 38.766, Long: 9.03). 

Construct for Experiment  

The experiments were conducted using an 

ASV rather than a real AUV due to practical 

considerations. Because of this, the beacon 

detecting system could be tested rapidly 

without having to wait for the AUV 

localization tests. Actually, with the right 

setup, a GNSS system may be used to 

ascertain the ASV's whereabouts. Still, when 

looking at it through the lens of practical 

acoustics, the challenge of AUV-based single 

beacon localization and the difficulties of 

ASV-based beacon recognition based on range 

measurements alone are similar. Laboratory of 

Robotics and Systems in Engineering and 

Science (LARSyS; see Figure 11) at the 

Instituto Superior T'ecnico of Lisbon designed 

Medusa, the ASV used in the experiments. 

The vehicle's agility is enhanced by its two 

side thrusters, which may be controlled 

independently for surge and yaw. Connectivity 

options include WiFi for land-based devices 

and an acoustic modem/ranging unit (Tritech 

Micron Modem; see Figure 12 (right)) for 

underwater communication. The vehicle also 

incorporates a Global Navigation Satellite 

System (GNSS) and an Attitude and Heading 

Reference System (AHRS). Submerged at a 

known location at a depth of 2 meters, the 

transponder is only a Tritech Modem unit 

(Figure 12 (left)) set up to respond to queries 

sent by the surface modem. In turn, the latter 

figures out how far apart the surface and 

underwater units are by multiplying the time it 

takes for a signal to go from one location to 

another by the water's specific speed. In order  
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to charge and test the transponder, it was 

attached to  surface support system via wire.  

 

 

 

 

 

 

 

 

 

 

Figure 5. The Medusa autonomous surface 

vessel. 

 

 

 

 

 

 

 

 

Figure 6. Fixed transponder (left) and 

acoustic modem/ranging device on the 

Medusa nose cone (right). 

The distance between the ASV and the 

transponder relies on the speed of sound in 

water, thus every effort was taken to measure 

it accurately using a specialized equipment 

every day before the experiments started. The 

ASV was given two sets of instructions for the 

observability study: one set of circular 

pathways centered on the transponder, and 

another set of parallel/orthogonal segments, 

some of which were radial with regard to the 

transponder. The ASV meticulously captured 

and stored all of its GNSS coordinates, 

compass directions, and range measurements. 

The processed data was run through an 

Extended Kalman Filter to determine its 

effectiveness, using equations that are identical 

to Equations (17)-(19). The filter was designed 

for on-board ASV implementation, therefore it 

compensates for transient range measurement 

errors and, in the absence of range data (a 

sample is acquired every few seconds), 

notifies the observer based only on velocity (as 

in a traditional dead reckoning approach). 

Based on the examples from numerical 

simulations, we assume that the process and 

measurement noises have covariance matrices 

Rw = diag([0.1 0.1]) and R = 5, respectively. 

In contrast, the EKF covariance matrix is 

initially set as P + 0 = diag([2 2]). Just to 

review, the theoretical and practical challenges 

of estimating the autonomous vehicle's 

location relative to the transponder are 

identical to those of predicting the 

transponder's position (as if it were unknown) 

given the vehicle's known position. The tests 

described below pertain to the second 

scenario. Experimental Findings Consistent 

results were obtained after many experiments 

were carried out and their data were examined. 

To begin, we measured a 100 by 100 meter 

square and guided the ASV in a series of 

parallel and orthogonal lines. In Figure 13, you 

can see the ASV's flight path. In the backdrop, 

you can make out the distant base station 

(Medusa Base) that takes data from the ASV 

and stores it. The black squares show the 

estimated location of the transponder at 
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different points in the mission.

 

Figure 7. Path followed by the Medusa 

Autonomous Surface Vessel (ASV) during 

the first mission. 

It is possible to find data relevant to the 

observability analysis in Figure 7. With actual 

relative displacement included, the top graph 

shows the computed inverse of the condition 

number of the observability matrix in Equation 

(9). By combining the precise position of the 

transponder with the ASV's GNSS data, we 

can determine the actual displacement, x, that 

has occurred between the two. The second plot 

in Figure 14 shows the observer's estimation 

inaccuracy. Within a circle centered on the 

ASV and having a radius equal to the range 

measurement, the filter is configured to 

estimate the transponder's position to be 10 

meters away from its real location. The 

distance between the ASV and the transponder 

is shown in Figure 14, third figure, by 

comparing the blue data from the acoustic 

ranging device with the red readings from the 

GNSS. Keep in mind that although the modem 

reading is quite accurate, updates take a long 

time and there are sometimes brief periods 

when there is no connection (which is 

expected, considering the challenging 

conditions of sound transmission in very 

shallow waters). The values of are shown in 

the fourth panels of Figure 14 (with Equation 

(12) as a reference), while the upper and lower 

eigenvalues of the EKF covariance matrix are 

shown in the final graphs. Important aspects of 

the mission that must be emphasized at this 

time are shown in Figures 13 and 14. Within 

the 80-180 s window when the ASV 

approaches the transponder, the filter error 

decreases at a faster rate than when it recedes 

from it. Also, remember that the noise 

covariance in process measurements raises 

both EKF eigenvalues, yet dead-reckoning 

data keeps the filter error low when range 

measurements aren't available. The second 

experiment, seen in Figure 15, included having 

the ASV circle the transponder. Figure 16 

shows that the ASV keeps a steady and a 

speed that is almost the same. The 

observability index, for example, reaches its 

maximum value at 2. Unlike the prior mission, 

this one exhibits a gradual and quick decrease 

in the filter estimation error, and the arger 

eigenvalue of the EKF covariance matrix 

remains contained over the whole experiment.

 

Figure 8. Observability parameters during 

the first mission: inverse of condition number 

(top plot), norm of estimation error (second 

plot from top), measurements of the range 

between the vehicle and the transponder 

(blue stars) and GNSS (red line) (third plot), 

γ (fourth plot), sin(θ) (blue) and cos(2θ) 

(green) (fifth plot) and eigenvalues of the 

EKF covariance matrix (last plot). 
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Figure 9. Path of the robot during the second 

mission. 

 

Figure 10. Observability parameters during 

the second mission: inverse of condition 

number (top plot), norm of estimation error 

(second plot from top), measurements of the 

range between the vehicle and the 

transponder (blue stars) and GNSS (red line) 

(third plot), γ (fourth plot), sin(θ) (blue) and 

cos(2θ) (green) (fifth plot) and eigenvalues of 

the EKF covariance matrix (last plot). 

Finally, the ASV was programmed to travel 

along a sinusoidal path (shown in Figures 17 

and 18), an example in which the observability 

index has a significant impact on the speed 

with which the estimation error decreases and 

the bounds within which the EKF covariance 

eigenvalues matrix can be calculated. In the 

experiment's final phase, range measurements 

are received in a dispersed fashion, and the 

increase in EKF eigenvalues due to the AUV 

process noise covariance can be observed. The 

attached multimedia file depicts a 

reconstruction, using experimental data, of the 

observability metric analysis in relation to the 

previously provided case studies. Animations 

showing ASV movement, EKF filter 

effectiveness, and observability index 

variability across many case studies are shown 

in the film. 

 

Figure 11. Path of the robot during the third 

mission. 
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Figure 12. Observability parameters during 

the third mission: inverse of condition 

number (top plot), norm of estimation error 

(second plot from top), measurements of the 

range between the vehicle and the 

transponder (blue stars) and GNSS (red line) 

(third plot), γ (fourth plot), sin(θ) (blue) and 

cos(2θ) (green) (fifth plot) and eigenvalues of 

the EKF covariance matrix (last plot) 

 

 

Conclusion  

Here we analyzed two separate localization 

issues, one involving the structural 

observability of a single beacon and the other 

involving the relative position of two AUVs 

estimated from range data alone. A proposed 

measure based on nonlinear observability 

theories was used to quantify the observability 

of vehicle motions. Analyses of simulations 

and experimental verification demonstrated the 

success of the proposed measure. In the future, 

researchers will concentrate on studying 

different types of observers and developing the 

best real-time trajectory planning algorithms 

that employ the recognized metric. We will 

also go over how to apply these ideas to a 

situation with more than one car. 
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