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Abstract— 

Understanding the domains, protocols, and ports that an IoT device communicates across is a basic barrier for IoT security and 

identification. Analytical and management solutions in these domains need to be able to identify and authenticate devices, as well as 

understand what constitutes regular device activity. Manufacturer Usage Description (MUD) is a white-list protection technique 

developed by the IETF; it uses a MUD file to codify permitted network activity, which can subsequently be used as a firewall. We show 

that it is harder than one may think to understand what is typical behaviour for an IoT device. The location of an Internet of Things 

(IoT) device may affect how it operates, the domains it can connect to, and even the protocols it uses. We break down and explain 

scenarios in which device behaviour is affected by geography. Next, we demonstrate how MUD files may be simplified in a more general 

sense. We can construct a universal MUD file that can be used in any region by processing MUD files from a variety of regions. We built 

MUDIS, a MUD file comparison and generalisation tool, to undertake the study. In order to help academics and IoT manufacturer’s 

view, analyse, and generalise MUD files, we have made our MUDIS tool and dataset publicly accessible online.  

INTRODUCTION 

The Internet of Things (IoT) industry is 

fragmented, with several players and no 

overarching standard for how devices should be 

built, protected, and recognised on the network. 

Specifically, this study looks at how the physical 

location of a device affects its behaviour in a 

network. We discovered that the exact same 

Internet of Things (IoT) device, although having 

identical firmware, exhibited varying degrees of 

behaviour and communicated with a wide variety 

of domains, protocols, and ports depending on its 

physical location. As far as we're aware, this is the 

first piece of study to formally identify device 

location as a factor influencing device behaviour. 

For this analysis, we combined the data from Ren 

et al. [1], who recorded devices that were both 

physically placed and logically connected in two 

locations, with our own dataset containing 

measurements for devices in our lab that were 

virtually connected to different locations using 

VPN or logically connected to different locations 

by registering the device in the IoT application in 

different countries. We demonstrate that the 

physical location of an Internet of Things (IoT) 

device will affect its network behaviour for a 

variety of reasons. One example is that for 

marketing purposes, the same IoT may have 

various characteristics depending on its location. 

Other examples include insufficient encryption, 

privacy rules, CDN-like solutions, and country-

specific legislation. Existing literature on this topic 

is limited to a discussion of how data protection 

laws in the United Kingdom and the United States 

(GDPR, FTC) affect the online behaviour of 

Internet of Things devices [1]. Our research, on the 

other hand, examines the role of location across a 

wide range of nations and shows that other factors 

also contribute to the observed disparities. The 

Manufacturer Usage Description and the security of 

the Internet of Things are both directly affected by 

this occurrence (MUD). As an IETF standard [2], 

the MUD allows us to codify the proper conduct of 

IoT gadgets on the network. The MUD file checks 

whether or not the device is being hacked in a 

fashion that is similar to an Access Control List 

(ACL) or a network firewall. Since the IoT device 

may use DHCP or LLDP to get the MUD file, just 

a single MUD file is needed for each firmware 

version, independent of the device's physical 

location. However, our research reveals that, in 

90% of tested devices, the same device with the 

same software exhibits distinct network behaviour 

in various geographic regions. We observed that in 

many circumstances, the device's network 

behaviour is not determined by its actual physical 

location but rather by the logical geographic region 

selected by the user during account registration 

(i.e., using geo IP) 
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BACKGROUND MUD 

The MUD serves a dual purpose in our 

methodology. Initially, we can study network 

activity at the flow level since the MUD file 

formalises that information. Second, MUD 

technique is a security solution, and enhancing it is 

a primary goal of this project. The MUD Internet 

Standard [2] is designed to describe the proper 

traffic patterns for IoT devices, which in turn 

reduces their attack surface. Any data that doesn't 

fit this profile is likely harmful and should be 

prevented in some way. Manufacturers of IoT 

devices give these details in MUD files. All MUD 

files are made up of Access Control Lists (ACLs) 

that have numerous Access Control Entries 

(ACEs). Figure 3 depicts how each ACE is defined 

as a 5-tuple. 

 

The IoT's valid endpoints are the locations to which 

it may send and receive data. Common methods for 

defining these include the use of domain names or 

ranges of domain names [2, 18] (like 

*.iotvendor.com), IP subnets (including *), and 

media access controls (MACs) for local area 

networks. In this regard, we point out that the 

MUD [2] specification strongly suggests 

substituting domain names for IP addresses. 

Accept or drop are the common ACE responses. 

Because of the whitelist in the MUD file, any 

communication that does not match an ACE is 

automatically dropped. To lessen the vulnerability 

of a firewall or AAA server, for example, the MUD 

manager reads the MUD file and deploys the 

appropriate Access Control List (ACL) rules. As a 

result, manufacturers have the difficult challenge of 

creating a full and representative MUD that 

accounts for a wide variety of factors, including the 

usage of third-party libraries, the OS network 

behaviour, the whole device's operational activities, 

and more. Tools that create MUD files from 

network captures [3, 10] are available to help with 

this problem. Another strategy involves a network 

security component [19] that collects the MUD file 

from real-world traffic and analyses it using big 

data. When dealing with IoT suppliers that lack the 

resources or motivation to produce a MUD file, this 

is a useful workaround. Analysing the Effects of 

Device LocationCaptured network traffic data (cap 

files) from our lab's router and log files from Ren et 

al. [1] make up our dataset. The 31 IoT devices 

(plugs, cameras, light bulbs, and so on) used in our 

captures are situated in up to 14 different countries 

(remotely or virtually) and make full use of all of 

their features [20]. Activation locations were 

determined by whether nations supported the IoT 

user application's registration and provisioning 

procedure. We discovered that the nation selected 

during device provisioning had a far greater impact 

on the device's network behaviour than the device's 

actual physical location (as shown by the IP 

address of the device as viewed in the VPN) (see 

full technical report for more details [21]). Moving 

on, we used MUDGEE [3] to transform the pcaps 

into MUD files. You may get the whole list of 

tested devices and the associated MUD files 

organised by country at [8]. 2 

The number of shared ACEs between two MUDs is 

divided by the sum of all shared ACEs to get the 

Jaccard similarity coefficient, which may be used 

to compare and contrast the two MUDs. Let's call 

the MUD of device d at position I MUDd i. Two 

MUDs for the same device (device d) at different 

locations I j) are comparable if and only if: 

 

Figure 1 displays the CDF of MUD similarity 

values for the devices in our dataset and compares 

the generated MUD files across various 

geographical areas. Nearly 80% of MUD 

comparisons exhibit similarity measures lower than 

0.7, indicating that device location has a major 

influence on the MUD. 

 

Figure 1: Cumulative Distribution Function (CDF) of MUD 

files similarity scores for all the devices in the dataset. Each 

similarity score is calculated by comparing two different 

locations MUD files of a device. Each device was captured in 

up to 14 locations. 
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Figure 2: Heat map of similarity measure for the Yi camera, 

across ten different logical locations. The heat-map highlights 

that cross-region locations have lower similarity scores. 

 In Figure 2, we take a deep dive and focus on an 

individual device, investigate its MUD similarity 

scores as a function of the geographical location. 

Figure 2 shows the MUD similarity heat-map of the 

Yi camera MUD files as measured in ten countries. 

We ordered the countries according to region. As 

can be observed, locations further away from each 

other (cross-regions) have lower MUD similarity 

values. Throughout our experiments, we observed 

that some device functionalities were not supported 

in all locations. For example, the Xiaomi camera 

face recognition features were supported only in 

the Chinese region. The reasons range from 

Table I shows a comparison of the network 

behaviour (power supplies, ports, and protocols) 

between two logical locations using Xiaomi 

cameras. 

 

from government policies to manufacturer 

advertising. It is normal practise for a producer to 

release many varieties of a product, with one for 

each market (e.g., [23]). 

PARALLELS IN THE MUDS 

This section compares and contrasts two MUD 

files. We found that changes to ACEs most often 

concerned the permitted endpoints' domain names. 

Our results show that there are subdomain-specific 

variations for 80% of the devices. To provide just 

one example, the Samsung SmartThings Hub 

(shown in Figure 3a) is compatible with two 

distinct domains in the United Kingdom and the 

United States: dc-eu01-

euwest1.connect.smartthing.com and dc na04-

useast2.connect.smartthing.com. However, of the 

devices in the sample, 9% had a unique top-level 

domain (TLD). As an example, the Yi camera may 

exchange data with many top-level domains 

(TLDs), including api.xiaoyi.com.tw in Hong Kong 

and api.eu.xiaoyi.com in Germany. Since the user 

specifies the device's logical location during 

registration, we infer that the manufacturer may 

implement various features and rules depending on 

the domain IDs used. 

 Keep in mind that the manufacturer can have 

decisions made based on physical location by 

employing a standard DNS server that can connect 

a single domain to different servers, according to 

the geo-locations; in this case, however, the user 

would not have the option to select a different 

logical location. When comparing ACEs from 

different MUDs, we consider them to be 

comparable if their domain names3 are similar and 

all other fields are also similar. We next 

demonstrate that, by include ranges in the sub-

domain name, it is possible to generalise a set of 

ACEs that are quite similar to a single ACE in the 

generalised MUD. It's the device's location that 

matters more in certain situations. In the instance of 

the Xiaomi camera shown in Table I, for example, 

the port and protocols utilised by the device vary 

depending on its location. In our technical paper 

[21], we explain how we compare ACEs in further 

depth by separating those that face the same 

direction of traffic into two groups. It is possible to 

distinguish between two types of ACEs: (1) those 

with the same or similar endpoints but a different 

port or protocol, and (2) those with the same or 

similar endpoints but a different port and protocol. 

 

 

FOG CATEGORIZATION 

The purpose of this chapter is to build a safe, 

complete, and reliable MUD that can be used by 

anybody. The universal MUD should work in all of 

them, which is what we mean by "comprehensive." 

Ultimately, the MUD has to be restrictive because 

 

Figure 3: Two MUDs of SmartThings hub ACEs, one from the 

United States (top) and one from the United Kingdom (bottom) 
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(bottom). With the exception of the endpoint 

being.connect.smartthings.com, MUDIS's generic ACE (right) 

has the same parameters as the original. 

whitelisting allows you to restrict IoT traffic to just 

authorised sources, making your devices more 

secure. In order to generalise across two MUDs, the 

most fundamental generalisation method is multi-

MUD. Using an iterative procedure, we may use 

the technique to generalise n MUD files by feeding 

the results from the previous iteration into the n the 

MUD file. With as few iterations as possible, we 

want to develop a fully-featured and adaptable 

MUD. In this paper, we demonstrate that our 

technique achieves faster convergence than the 

naïve algorithm. Adding additional MUDs from 

different regions will not alter the overall MUD 

experience. The scope and density of a naïve 

generalisation technique that simply unifies all 

existing MUDs would be optimal. However, we 

demonstrate that its convergence is sluggish and 

that it produces a bigger MUD file than our 

MUDIS generalised MUD. Administrators or 

manufacturers who must maintain a MUD will like 

a file with fewer rules since it is easier to explain to 

humans. Additionally, it provides a lightweight 

firewall implementation. The concept behind 

MUDIS generalisation is to combine two ACEs 

that are otherwise identical save for a single 

character in the sub-domain field (see Figure 3b for 

an example,connect.smartthings.com). In order to 

maintain the integrity of the generic MUD, MUDIS 

does not gene. 

 

Compare the Yi Camera's generalised MUD and 

naive unifying MUD file performances in Figure 4. 

For each place along the x-axis, the unified or 

generalised MUD is represented by the dot. Each 

MUD is compared to the global MUD, which 

includes all possible regions, to get a similarity 

score. 

differentiate ACEs with various TLDs (e.g., 

iotvendor.co) and well-known, client-shared cloud 

services (e.g.,s3.amazonaws.com). With respect to 

subdomains, MUDIS only generalises when the 

whole domain is under the control of the primary 

domain owner, i.e., the IoT manufacturer or the 

precise IoT service that the manufacturer employs. 

This is consistent with the IETF's DNS for IoT 

Operational Consideration [24]. If several identical 

ACEs share a domain that has already been 

generalised for some of their counterparts, we will 

generalise that domain for all of them to guarantee 

rapid convergence. We expand it to handle future 

locations we haven't met yet based on the crucial 

insight that such a domain surely contains a 

segment that relies on the location. The 

convergence study of MUD files for the Yi Camera 

from 10 different places is shown in Figure 4. As 

quick convergence is of primary importance to us, 

we rank the sites such that we choose those from 

varying areas first. Locations outside of their 

respective areas tend to have lower similarity 

scores, as illustrated in Figure 2. This means that 

they provide more specific details to the global 

MUD. We contrasted our generalisation technique 

for MUDIS to a naïve one that just combines all 

existing MUDs. Every dot on the x-axis represents 

a particular generalisation of a MUD in one of the 

places you've chosen. Point RU, IN, for instance, is 

the generalised MUD that results from combining 

the RU (Russia) and IN (India) MUDs. We provide 

the cardinality (number of ACEs) and similarity 

score to the associated global MUD for each 

generalised MUD; the global MUD is the result of 

running the algorithms (naive or MUDIS) on all of 

the locations. In terms of both cardinality and 

convergence time, our version of the MUD method 

outperforms the naive approach. 

 

Conclusion  

Our results show that the physical placement of a 

device influences its network activity and the MUD 

values it generates. To make a universal MUD, we 

provide a powerful generic programming approach. 
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