
 

 

 



                                                                                                                                                                 ISSN 2321-2152www.ijmece .com  

 Vol 8, Issue 3 Aug 2021 

 

 

Multi-Robot System Pattern Formation and Adaptation:  

A Review 

Mr.D.VEERANNA1, Dr.K.AMIT BINDAJ2,Ms.P.NAGA LAXMI3,Ms.Y.ANITHA4,Mr.Ch.GOPALA RAO5, 

. 

Abstract  

Recent robotics advancements are making it possible to deploy large numbers of low-cost robots for tasks like surveillance and search. 

However, coordinating a group of robots to perform these kinds of tasks is still difficult. Recent research papers on multi-robot systems 

are summarised in this report. It's divided into two sections. The first section covered research into the pattern formation problem; 

specifically, how robots can be commanded to form a pattern and keep it. The second section examines the research into adaptive 

strategies for managing networks of robots. In particular, we've looked into (1) how evolution is used to generate group behaviours, and 

(2) how learning (lifelong adaptation) is used to make multi-robot systems respond to changes in the environment and in the capabilities 

of individual robots. 

Introduction 

Recent robotics advancements have made it 

possible to deploy large numbers of low-cost robots 

for tasks like surveillance and search. However, 

coordinating a group of robots to perform these 

kinds of tasks is still difficult. Previous reviews on 

multi-robot systems have taken a more generalised 

approach (see, for example, Cao et al.[25] and 

Dudek et al.[7]). In contrast to these, the scope of 

this report is limited to the most up-to-date research 

on pattern formation and adaptation in multi-robot 

systems. The document can be split into two 

sections. In the first section, we looked at previous 

research into the "pattern formation problem," or 

the question of how a group of robots might be 

commanded to form and keep a pattern. The second 

section examines the research into adaptive 

strategies for managing teams of robots. We have 

looked into (1) how evolution is used to generate 

group behaviours and (2) how learning (lifelong 

adaptation) is used to make multi-robot systems 

respond to changes in the environment as well as in 

the capabilities of individual robots. 

The emergence of patterns in networks 

of multiple robots 

The pattern formation problem entails getting a 

group of robots to form and stay in a specific 

formation, like a wedge or a chain, and maintaining 

that formation. Pattern formation has many current 

uses, including in rescue missions, landmine 

clearance, space exploration, satellite array control, 

and unmanned aerial vehicle navigation (UAVs). 

Cooperative behaviours among members of 

different animal species have also been observed to 

lead to pattern formation. In these cases, 

individuals maintain a consistent orientation and 

distance from one another while moving, or they 

fill a given area as homogeneously as possible. 

Flocking birds, shoals of fish, and ant chains are all 

examples of animals forming patterns[18]. We 

have divided the research on pattern formation into 

two categories. In the first category are studies in 

which coordination is handled by a command 

centre that has full visibility into the operation and 

can issue instructions to each robot as needed. In 

the second category, we find approaches to 

coordination through the formation of distributed 

patterns
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Institutionalized patterning 

A computational unit coordinates the activities of 

the entire group in centralised pattern formation 

methods[3, 13, 23, 24]. The robot's motion is then 

relayed to it over a data connection. To ensure that 

a group of robots travels in the desired formation 

along a predetermined path, Degerstedt and Hu[13] 

propose a coordination strategy to achieve this 

goal. The process of path planning is handled 

independently from path tracking. Both the 

centralization and the tracking of virtual reference 

points are handled independently. A virtual leader's 

trajectory is calculated to serve as a point of 

orientation for the robots. A trio of virtual robots 

were guided around a virtual obstacle using this 

strategy. Here, the robotsthat met at the base of the 

triangle detoured around something that had landed 

in the middle of the robots. There is conclusive 

evidence in the paper that the described method 

stabilises the formation error if the robots' tracking 

errors are bounded or if tracking is done perfectly. 

Unmanned aerial vehicles (UAVs) can be flown in 

formation with the help of a centralised path-

planning method, as proposed by Koo and Shahruz 

[23]. One UAV, the leader, is more powerful and 

capable, and it calculates the course for the others 

to follow. Cameras and sensors are only available 

to the leader. It uses a communication channel to 

instruct the other UAVs on what paths to follow. In 

order to follow their paths, UAVs need to take off 

and fly in that direction. Experiments take into 

account both a scenario in which UAVs launch one 

by one and another in which they launch all at 

once. Computing trajectories is the main focus of 

this research. A centralised trajectory computation 

scheme based on kinetic energy shaping is 

proposed by Belta and Kumar [3]. They use a 

kinetic energy metric that gradually shifts over time 

rather than a constant one. The procedure creates 

seamless paths for a group of mobile robots to 

follow. One parameter allows the user to adjust the 

distance between the robots. The approach is not 

scalable, however, because it does not account for 

avoiding obstacles. Kowal czyk [24] details an 

assignment strategy for the target-based formation-

building problem. The algorithm starts with a 

dispersed group of robots and assigns them each a 

location on the final formation's target point. Then, 

it plots out the robots' priorities and paths so that 

they don't run into each other on the way to their 

destinations. There is a buffer zone around each 

robot's path where slower robots can't go. The robot 

will wait until the higher priority robot moves out 

of the way if its path takes it through an area that is 

off limits to it. Both holonomic and non-holonomic 

robots are used to evaluate the method. The 

methodology presupposes the availability of a 

centralised processing power and global sensing 

capabilities. Lack of consideration for the method's 

scalability. Strategies for centralised pattern 

formation presume the presence of a 

communication channel between the coordinating 

node and the individual robots, and rely on a 

coordinating node to oversee the entire group. This 

centralised approach is less scalable for controlling 

a large number of robots, more expensive to 

implement, and less reliable due to the underlying 

assumptions. Decentralized strategies for pattern 

formation are another option. 

Adaptation in multi-robot systems 

 In this section we review the studies that used 

adaptation strategies in controlling 

multirobotsystems. Specifically we have 

investigated (1) how learning (life-long adaptation) 

is used to make multi-robot systems respond to 

changes in the environment as well in the 

capabilities of individual robots, and (2) how 

evolution is used to generate group behaviors. In 

multi-robot systems, adaptation can be achieved at 

two levels: group level and individual level. We 

classify the recent studies into these levels and 

review them in the following subsections.  

Adaptation at the Individual Level 

When the state space is too large, reinforcement 

learning models become ineffective. Rather than 

relying on a single, overly complex learning 

module, splitting it up into separate modules for 

each state can help. The research conducted by 

Takayashi [[26]] is one example. The issue he 

focused on was a scaled-down version of the robo-

soccer challenge. It's assumed that adversaries 

employ a variety of strategies. Each module 

includes its own set of predictors and planners. The 

predictor makes guesses about the opponent's next 

move based on the latter's historical patterns of 

behaviour. Conversely, a planner will use this 

forecast to generate a set of actions that will 

maximise success. As a result of this competition, 

only the best predicting module is consistently 

reinforced. By doing so, we can develop unique 

modules to counter various enemy strategies. Ball 

chasing with a randomly moving opponent is the 

problem used in this study. Compared to learning 
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individual modules, the outcomes are superior. 

Given enough trials, reinforcement learning 

converges to the best policy, but in practise, these 

numbers are often unfeasibly high. To accelerate 

the learning process, Piao[20] suggests a refined 

version of the reinforcement learning technique. 

Essentially, the method is a set of behaviour rules 

for individual states that are the result of a 

synthesis of rule learning, reinforcement learning, 

and action level selection. 

To form the rule base, we use "instances," which 

are essentially states that have traversed some kind 

of predetermined threshold. After each epoch, the 

instances are given names based on the data 

collected during that time period. The data from 

these examples is then used to formulate rules. The 

guidelines herein serve as a 

prohibitive rules intended to discourage wasteful or 

harmful behaviour. The selection of actions at the 

action level is governed by predetermined rules that 

govern the robot's overall tactic. Together, sensor 

data and action level are fed into reinforcement 

learning to produce state information. The module 

that learns to generate actions from sensory data 

and action levels is called reinforcement learning. 

In this case, Piao uses it to solve the robo soccer 

issue. In contrast to conventional Q learning, he 

claims that learning with multiple robots yields 

superior results. Since reinforcement learning was 

developed with a focus on the performance of 

individual agents, it lacks features that would 

enable the facilitation of social behaviours. The 

research of Tangamchit[16] addresses this issue. 

The paper discusses the split between systems that 

operate at the activity and task levels. Action-level 

systems produce reactive behaviours in order to 

address issues. In contrast, task-level systems 

create tasks from a collection of smaller tasks, 

which can then be delegated to multiple agents. 

When it comes to robots, Tangamchit defines 

cooperation as a task-level activity in which 

resources and responsibilities can be shared. Both 

international and regional incentive plans are taken 

into account. One's contribution to the group's 

overall reinforcement is multiplied in the global re 

ward scheme. The local reward scheme is different 

because the reward is not shared among the group 

members. Q-learning and Monte Carlo learning are 

two of the considered learning algorithms. When 

determining the value of each action in each state, 

Q-learning uses cumulative discounted rewards, 

while Monte Carlo learning uses averaging. Each 

action taken in a state will earn the same reward 

regardless of which episode it is. This strategy is 

less efficient because it fails to take advantage of 

later actions in an episode that are more likely to 

result in a positive outcome for the player. Puck 

collecting behaviour, a special case of the foraging 

problem, is investigated here. Pucks can only be 

collected and deposited in the trash can by robots. 

Every action, with the exception of putting down a 

puck, has a punishing consequence. There is a 

puck-free "home" zone, a puck-filled "deposit" 

zone, and pucks all over the field. In order to 

accomplish this, we employ a pair of very different 

robots. Out in the wider world, the first robot's 

mobility and collection abilities shine.  

The second robot can only move around its home 

area, but it is more effective at the bin deposit 

action. Collaborating robots are necessary for the 

best strategy, as they must first bring pucks into the 

home region and then deposit them there. That sort 

of learning is reserved for specific tasks. The 

findings show that local rewards or discounted 

cumulative rewards, like those used in Q learning, 

are ineffective for teaching task-level cooperation. 

However, when average rewards are combined 

with global rewards, cooperative policies emerge. 

To incorporate domain knowledge, reinforcement 

learning only needs feedback for the applied 

sequence of actions. A common method of 

incorporating this is through the use of multiple 

reward functions. When it comes to the role of 

rewards in a foraging task, Mataric[14] talks about 

it. Though easy to analyse mathematically, single-

goal systems often lead to difficulties in behaviour 

acquisition. Converting behaviours, especially 

those that are conditional or sequential, into a 

single, unified goal function is challenging. 

 The alternative is to use multiple goal functions, 

each of which describes a different subgoal of the 

agent. Estimators of future progress are another 

development. These approximators provide an 

approximate measure of progress toward a given 

objective. Using this area's domain knowledge is 

greatly enhanced by the aforementioned two 

enhancements (by designing appropriate subgoals 

and estimating progress of the subgoals). Because 

not only the final objective but also intermediate 

steps are reinforced, they provide much more 

reinforcement than conventional methods. Robots 

performing a real-world foraging task are used to 

evaluate the effectiveness of the new method. 

Pucks will be gathered and delivered to your house 

by robots. Also, robots are expected to make 

regular appearances at home. Some basic reactive 
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behaviours are taught to the robots in order to make 

the state space of the learning problem more 

manageable. Pucks are picked up when the agent is 

in front of them, obstacles are avoided, and pucks 

are dropped when the agent returns home. The 

optimal policy is generated by hand and then 

compared to the experimental results. Findings 

support the usefulness of both planned 

enhancements. The paper makes a fascinating 

observation about the disruption brought on by 

agents. The rate of learning and the degree of 

convergence suffer as the number of learning 

agents increases.  

Cooperation is achieved in Parker's[6] L-

ALLIANCE model through the use of various 

behaviour sets and worldwide communications. A 

watcher is assigned to each set of behaviours. 

These watchdogs check the necessary conditions 

for activating behaviour sets and evaluate the 

agent's and other agents' abilities. Parker presents a 

pair of drives, impatience and acquiesces cence. 

Apathy describes a propensity to allow other robots 

to carry out a task that one's own robots could do, 

while impatience corresponds to a propensity to 

take over a task that's already in progress. The L-

ALLIANCE framework modifies these intrinsic 

motivator settings while the learner is in progress. 

For this design to work, robots must constantly 

report their status to one another. This design 

presupposes that the robot is responsible for any 

potential environmental changes that result from its 

declared actions. That solves the issue of giving 

credit where credit is due. Because of its flexibility 

and adaptability, the L-ALLIANCE architecture is 

well-suited for managing diverse teams and 

keeping up with developments in robot capabilities. 

To solve the credit assignment problem, however, 

L-ALLIANCE necessitates global communication 

and a bold assumption. According to Goldberg et 

al. [4], Augmented Markov Models are a promising 

method for achieving this goal (AMM). An AMM 

is a Markov model with supplementary transition 

statistics. Not a policy generator, but rather a tool 

for learning from environmental data. In contrast to 

Hidden Markov Models, AMMs operate under the 

premise that the precise nature of an action's 

execution is known in advance. As a type of 

Markov model, AMMs are of the first order, but 

they are constructed in stages. With this enhanced 

cognitive capacity, they will be better able to 

approximatively handle systemic high-order 

transitions. [2] Their research integrates AMMs 

with behavior-based robotics. AMMs with varying 

time resolutions are used to keep an eye on each 

type of behaviour. This enables the system to 

quickly and precisely react to any changes in its 

surrounding environment. 

Adaptation on a social scale 

When applied to multi-robot systems, 

reinforcement learning is inefficient because, by 

definition, it is centralised. Opportunistically 

cooperative neural learning, which Yanli 

researched in his study [27] proposes as a 

compromise in the centralised vs. decentralised 

learning debate. Each agent in a pure decentralised 

learning model keeps its own learning data private. 

Since the group won't benefit from everyone's 

shared knowledge, this is a major setback. By 

incorporating 'opportunistic' search, Yanli is able to 

address this issue. A concept from genetic 

algorithms called "survival of the fittest" is 

conceptually similar to this approach. To increase 

their efficiency, less-fit networks often mimic the 

behaviour of more-fit ones. 

Yanli compares three scenarios, including a 

centralised setup, a decentralised setup, and an 

opportunistically decentralised setup. All of these 

scenarios are put to the test on a searching task, in 

which agents are tasked with exploring as much of 

a specified area as possible while minimising the 

number of times they have to make a pass through 

it. Working together is clearly the most effective 

tactic. Each agent works in concert with the others 

and makes preemptive plans for their actions. Plans 

are discussed amongst agents as well. Using these 

strategies, each agent can anticipate the subsequent 

actions of all other agents. These predictors are 

learning machines. As soon as other agents' next 

moves can be accurately predicted, rewards can be 

calculated with greater precision. According to the 

findings, central learning outperforms all of these 

approaches. However, there are a number of issues 

with fault-tolerance and communication that plague 

central learning. It turns out that OCL 

(opportunistically cooperative learning) is nearly as 

effective as central learning, and that both are 

significantly more so than the distributed-only case. 

Agah[1] incorporates both personal and social 

change into his writing. Agah tackles the problem 

of teaching multiple robots at once with the help of 

the so-called Tropism Architecture. The tropics 

architectural style acts as a bridge of 

comprehension between perception and behaviour. 

A tropism is a predisposition to react to specific 

stimuli.  
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Learned tropes are stored in the tropism 

architecture (i.e. state, action, tendency pairs). 

Agents' choices are determined by how well their 

preconceived notions of the world align with the 

actual world. A stochastic process is used to 

determine which actions to apply biassed on the 

tropism values. This architecture makes use of both 

supervised and unsupervised learning. In a self-

directed learning system, the database of tropisms 

is continually refined through the incorporation of 

new information garnered from the surrounding 

environment. When a state is updated, the action is 

changed when an invalid or negatively reinforced 

action is encountered, and the tropism value for a 

positively reinforced pair is increased. Each agent's 

list of tropes is encoded as a sequence of bits with 

varying lengths in order to facilitate population 

learning. A genetic algorithm is then executed on 

these sequences of binary digits. Each organism's 

"fitness" is determined by how much it learned and 

how many rewards it received. While Q-learning 

relies on reinforcement propagation, these findings 

suggest that this dual approach is also effective. It's 

not always practical to have predetermined 

behaviours, and sometimes it's necessary to learn 

behaviours from scratch. In this sense, we can think 

of hexapod locomotion. Research by Parker[8] on 

hexapod robots learning to perform a cooperative 

box pushing task. The primary challenge he faces is 

the locomotion problem, as hexapod robot 

movement is more complex than that of wheeled 

robots. Parker designed Cyclic Genetic Algorithms 

(CGA) specifically for this task because they can 

handle the complex control needs. The goal of a 

CGA is not to evolve a simple stimulus-response 

pair, but rather a sequence of operations. CGA 

stores a sequence of actions that the agent must 

perform repeatedly. 

By pairing the chromosome under evaluation with 

the optimal solution to the problem, a computer 

simulation can determine how well suited each 

chromosome is for the task at hand. The 

chromosome's fitness is calculated based on the 

collective's success. The outcomes support the 

usefulness of the planned approach. For robots to 

work together, they must be able to coordinate their 

efforts with one another. Peer-to-peer 

communication models were used in early 

cooperative approaches. While this may be 

necessary for an optimal solution, doing so would 

necessitate ever-increasing computational power 

and bandwidth to handle the growing number of 

robots. It's true that establishing channels of 

communication on a local level helps ease 

communication bottlenecks, but this is still an 

issue. An approach to overcoming this 

communication barrier is stigmergy, or talking to 

people or things in the environment. Scalability is 

achieved through an implicit communication 

system, as seen in social insects. The work of 

Yamada[28] provides a functional example of an 

implicit communication system for group robot 

cooperation. The problem of pushing boxes is used 

to illustrate this method. A light beacon indicates 

the location of the goal, and it is assumed that the 

robots can sense the motion of the box they are 

pushing, the presence of other robots, and the 

boundaries of the room. In this model, walls are 

modelled as rigid cubes that are ultimately 

disregarded. In order to address the issue of 

implicit communication, the authors create 

fictitious scenarios. Conditional abstract world 

models are computed from sensor data and very 

basic memory structures (such as counters for some 

sensor read ings). For every possible circumstance, 

robots have their own sets of rules. The data 

gathered by sensors is used to inform these rules. 

Conclusion 

Recent research on multi-robot system pattern 

formation and adaptation was summarised. There 

are two distinct categories within the research on 

pattern formation. In the first category are studies 

in which coordination is handled by a command 

centre that has full visibility into the operation and 

can issue instructions to each robot as needed. In 

the second category, we find approaches to 

coordination through the formation of distributed 

patterns. Research on controlling multi-robot 

systems with adaptation strategies can be broken 

down into two categories: group and individual. 
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