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Abstract— 
Understanding mobile data consumption patterns is crucial for learning about urban 

ecosystem and human activity. This task is challenging in the sense that 

 

The complexity of mobile data usage in vast metropolitan environments, the disruption of 

unusual events, and the absence of prior understanding of urban traffic patterns are the three 

problems. We suggest a fresh method for creating a strong system that consists of three 

subsystems: time series decomposition of mobile traffic data, pattern extraction from various 

elements of the original traffic, and anomalous event detection from noises. 

Three significant findings come from our examination into the mobile traffic data of 6,400 

cell towers in Shanghai. 

First, we find five daily patterns among the 6,400 cellular towers that correlate to various 

human daily activity patterns. 

 

Introduction I. 

 

Massive amounts of mobile traffic data are 

used as a result of the widespread 

availability of LTE and 4G networks.  

 

In the last ten years, the amount of mobile 

data traffic has increased by 4,000 times, 

and our society is currently dealing with a 

remarkable acceleration in the expansion 

of cellular data traffic. In 2015, there were 

3.7 exabytes of monthly mobile data 

traffic, and by 2020, that number is  

predicted to rise to 30.6 exabytes. As a 

result, studying mobile cellular traffic  

becomes a crucial method for 

comprehending human behaviour and 

urban environment. However, our 

understanding of how people's routine 

activities and unplanned occurrences 

impact the mobile traffic of cellular towers 

is relatively restricted [2]. Such 

information is quite important. 
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Determine the placements of the cellular 

towers based on traffic patterns and apply 

suitable tactics for the towers of various 

patterns to reduce traffic loads during peak 

hours. In 

Additionally, if a technique can be created 

to precisely identify abnormalities in 

cellular traffic data, it will assist ISP in 

identifying equipment failures or 

unexpected crowd occurrences so that they 

may take appropriate action to minimise 

possible loss. Fundamentally, accurately 

recognising mobile traffic patterns is 

crucial for comprehending human 

behaviour, which may be used to improve 

infrastructure and living conditions. 

An appropriate dataset for analysing urban 

people activity is cellular network record. 

Today's mobile lifestyle frequently 

involves using a cellular network to access 

the internet. In our metropolitan lives, we 

constantly use cellphone data to check out 

in. Using smartphone applications to 

access stores, hail a cab using taxi hailing 

services, connect with pals on social 

media, etc. Call description records 

(CDRs), which are more detailed, 

 

Due to the increasing frequency of access, 

mobile traffic data records are also 

frequently employed to reveal human life 

patterns in cities. In contrast, there is only 

200–300 m between two nearby cellular 

towers in metropolitan areas, so mobile 

traffic data likewise offers high spatial 

granularity. Another significant data 

source that is frequently generated in 

metropolitan areas is social media data. 

Social media data are difficult to gather 

and exploit due to the variety of platforms 

and formats. For instance, when a route is 

busy, the nearby cellular towers' mobile 

traffic increases. 

Three factors make it difficult to identify 

the traffic patterns of large-scale cellular 

towers. The first reason why the traffic 

around cellular towers is complicated is 

because 

 

Towers vary greatly from one another. 

Furthermore, even the traffic from a single 

cell tower exhibits various patterns over a 

range of time periods. Finding a method 

that can examine it universally is 

challenging because of this. However, we 

must discover a way to describe these 

variations and create a model that can take 

into account varied contexts. Second, 

unintentional incidents have an impact on 

the traffic at cellular towers, which further 

complicates analysis by adding 

complication. For instance, a cellular 

tower's traffic volume will increase 

suddenly and depart substantially from its 

usual patterns when a parade happens 

surrounding it. 

 

It is so challenging to figure out how to 

reduce the impact of these unintentional 

occurrences on pattern analysis and to 

identify anomalous events. Thirdly, it is 

challenging to choose the right number of 

patterns and to recognise their significance 



since we have limited prior knowledge 

about the traffic patterns of cellular towers. 

 

2332-7790 (c) 2017 IEEE. Although 

personal use is allowed, republication and 

redistribution require IEEE approval. For 

further details, go to 

http://www.ieee.org/publications 

standards/publications/rights/index.html. 

Although it hasn't been fully edited, this 

paper has been accepted for publication in 

a subsequent edition of this magazine. 

Before the final publishing, the content 

may change. TBDATA.2017.2778721, 

IEEE Transactions on Big Data, DOI for 

citation 

 
 

 

Fig. 1. Framework overview. 

features. On the one hand, there may be an 

enormous number of patterns due to the 

high density of cellular towers, yet some of 

them are not particularly helpful in 

analysing human urban activity. In 

contrast, 

 

However, some mobile phone towers 

exhibit a combination of traits from several 

designs. Due to the volume of 

communication between these cellular 

towers, it is difficult to discern the few key 

patterns that are buried. 

We create a powerful system to decode 

and model data on mobile traffic from 

thousands of cellular towers in order to 

overcome these difficulties. Our suggested 

framework is shown in broad strokes in 

Fig. 1. Data preprocessing, time-series 

decomposition, pattern modelling, 

anomalous event detection, and traffic 

prediction make up our system's five 

components. It can handle massive 

amounts of data. component components 

include residual, seasonal, and trend. An 

irregular tendency across time is 

represented by the trend component. 

 

The residual component is thought of as 

sounds or odd events on a larger time 

scale, while the seasonal component shows 

a periodic variation that typically 

corresponds to routine activity. 

We create a model of human activity 

patterns based on seasonal factors and 

present a technique for predicting mobile 

data traffic. Additionally, we provide a 

technique to identify anomalous 

occurrences from traffic data and verify 

the outcomes using actual traces. In order 

to reduce the impact of unusual eventsWe 

create a model of human activity patterns 

based on seasonal factors and present a 

technique for predicting mobile data 

traffic. Additionally, we provide a 

technique to identify uncommon 

occurrences from 

 

the traffic logs and verify the findings 

using actual traces. We breakdown the 

original mobile traffic data and extract the 

primary traffic patterns by utilising 

hierarchical clustering [8], which does not 

need a specified number of patterns, in 

order to remove the effect of anomalous 

occurrences and model the traffic pattern 

from several angles. 

As a result, we may use the residual 

component to identify unexpected 

occurrences. 

We obtain the following intriguing results 

by using our method to look at the mobile 

traffic records of 6,400 cellular towers, 

which were gathered by ISP from 

Shanghai. 

 

According to the one-day seasonal 

component of their traffic consumptions, 

the cellular towers can be divided into five 

groups, and these groups correspond to 

five different types of urban function 

http://www.ieee.org/publications%20standards/publications/rights/index.html
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areas: the residential area, the 

transportation area, the office area, the 

entertainment area, and the mixture area. 

This discovery demonstrates how human 

activity patterns affectWe introduce the 

ARIMA model, which forecasts mobile 

traffic with great accuracy, demonstrating 

the importance of this result. 

 

In order to detect the two main trends—

which alternately rise and decrease during 

the week—we may model the traffic 

patterns with the weekly trend component. 

These two weekly trend patterns are a 

reflection of actual, week-long human 

activity. 

Our analysis demonstrates that the 

discovered anomalous events match the 

anomalies with actual occurrences, 

demonstrating that odd events may be 

identified from the residual component 

utilising our suggested technique of 

anomalous event identification. 

 

The remainder of this essay is organised as 

follows. We discuss the used dataset and 

explain our rationale in Section II. 

We outline each element of our system in 

Section III. 

 

We specifically outline our decomposition 

and grouping methods, and by talking 

about the relationship between daily 

patterns and weekly trend patterns, we 

create a model for projecting mobile traffic 

consumption. Then, using the residual 

component, we provide a strategy to 

identify anomalous events. We analyse the 

results in Section IV, and after reviewing 

the related work in Section V, we wrap up 

this study in Section VI. 

 

 II. MOTIVATION AND DATA SET 

A. Data Description and First Findings 

An anonymized cellular trace is the 

original dataset. 

 

by an ISP from Shanghai, which spans the 

dates of August 1 and August 31, 2014, 

and comprises 2.4 petabytes (1015) of logs 

from over 6,400 base stations (BSs) 

located across Shanghai. The trace 

includes the (anonymized) device ID, start 

and finish times of each data connection, 

the BS ID, the BS address, and the amount 

of 3G or LTE data utilised during each 

connection for each entry. This massive 

dataset covers human activity in Shanghai 

and offers a solid physical foundation for 

our investigation in the actual world. 

In Fig. 2, we display many straightforward 

representations of this dataset's properties. 

The Cumulative Distribution Function 

(CDF) of the time span between is 

displayed in Subplot (a). between two 

records in a row. The findings show that 

more than 85% of consecutive records 

occur in less than 

 

60 minutes. Compared to an average inter-

event time of 8.2 hours 
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(a) CDF of interval time                                                    

(b) PDF of log number  

Fig. 2. Illustration of the quality of our 

dataset. 

The cellular data accessing logs are 

substantially more finely detailed during 

periods of consecutive mobile phone 

conversations [3]. The Probability Density 

Function (PDF) of the number of records 

is displayed in Fig. 2(b). 

 

per user, in that order. The majority of 

mobile users have over 1,000 recordings 

overall. These findings show that our 

dataset has a large number of records of 

mobile users, and the precise temporal 

granularity ensures the validity of human 

activity modeling. 

Our processing of the material into an 

easily consumable format allows for more 

effective use of the data. To be more 

specific, we begin by erasing logs that are 

duplicated or conflicted due to 

technological difficulties. Then, 

 

We achieve this by averaging the traffic 

and user count of each BS across brief 

intervals of time. The data we've collected 

suggests that a time span of 10 minutes 

works well. This allows us to collect a set 

of data for the total traffic and user count 

at each BS. The array has a length of 

4,032, with each member representing the 

amount of traffic or the number of users at 

a certain ten-minute period throughout 28 

days. Finally, we use APIs from Baidu 

Map to translate BS addresses to 

longitudes and latitudes, allowing us to 

locate specific landmarks. Figures 3 and 4 

depict typical cases from our dataset. 

mobile phone users in a certain area served 

by a particular cell tower. Even if we can 

distinguish 28 distinct one-day periods 

from the four-week mobile traffic shown 

in Fig. 3 (a), it is still possible to see that 

 

Mobile traffic data is challenging to 

examine because of the various variations 

it includes. You can see the fluctuation in 

the tower's user base over the course of 

four weeks in Fig. 3 (b). It is interesting to 

compare Fig. 3 (b) with Fig. 3 (a) and see 

that the mobile traffic series is definitely 

full of peaks, some of which correlate to 

the peak numbers of users, while others are 

generated by unknown sources. Naturally, 

the impact of out-of-the-ordinary 

occurrences and sounds further muddles 

interpretation. 

We may glean two insights from Fig. 4's 

depiction of the geophysical traffic 

volumes at 4 a.m., 10 a.m., 4 p.m., and 10 

p. 

To begin, diverse human activities at 

various times of the day result in varying 

traffic consumption. Since most 

individuals are still asleep at 4 in the 

morning, mobile data usage is low across 

the board. Due to most individuals being at 



work, peak times for mobile data use occur 

around 10am and 4pm. 

At 10 p.m., when most people have left 

work for the day and are starting to wind 

down at home, there is a surge in the 

volume of mobile data traffic. 

Two, cellular towers' bandwidth is used in 

various ways and at different times 

depending on the locations' mobile traffic. 

Towers for wireless communication, such 

as mobile phones, are often installed at 

strategic locations across a city. 

 

experience high traffic consumption in all time. The hottest 

areas covered by the darkest color also change over time, 

which suggests the movement of the crowd during one day. 

B. What Drives Us 

Data from cell towers may be used as a timely snapshot of urban life. The difficulty arises, 

however, from the intricacy of 



 

Due to the dynamic nature of mobile 

traffic data, the presence of outliers, and 

the absence of previous knowledge, it is 

difficult to directly extract the information 

we need from the original traffic data. 

The complexity of mobile traffic data, the 

disruption of such abnormal occurrences, 

and the absence of previous information 

for data patterns are all issues that we use a 

time series decomposition technique to 

solve by drawing on the theory of time 

series analysis [7]. This kind of mobile 

traffic analysis has two benefits. As a first 

step, if we think of the traffic data as a 

time series, we can see that the four-week 

time series has a natural period of one day 

and a discernible trend within one week. 

By breaking down the time series into its 

constituent parts, we may conduct our own 

analyses of these characteristics. So, the 

initial traffic complexity may be much 

reduced after this breakdown. In addition, 

a time series decomposition allows us to 

isolate the disruption caused by out-of-the-

ordinary occurrences, laying the 

groundwork for future research in this 

area. 

 

detection of unusual events Next, hierarchical clustering may be used to automatically find 

the most important patterns among the decomposed components. 

 

hundreds of cell towers' worth of traffic data. 



Figure 5 shows the cumulative traffic over 

all 6400 towers across various time 

intervals. The daily variations are shown in 

Fig. 5 (a), whereas the weekly variations 

are depicted in Fig. 5 (b), and they are 

quite comparable. In addition, the monthly 

traffic amounts shown in Fig. 5 (c) show a 

distinct weekly pattern. These 

commonsense conclusions push us to 

analyze mobile traffic data in order to 

draw out daily patterns and weekly trends. 

Thus, we recommended decomposing the 

traffic data into three components: the 

periodic components, the trend 

components, and the residuals, in order to 

study the traffic data in detail and to 

predict the traffic patterns at various 

scales. 

Systems and algorithms, part III 

1. Disintegration 

Following the format described in Section 

II-A, we have a mobile traffic record or 

observation fx1; x2; x4032g. The 

observation is a 28-day record of traffic 

data from a single tower, and each entry 

represents a 10-minute sum of that tower's 

traffic. Further, it has already been shown 

that this record displays both trend and 

periodicity. In light of this, we may use a 

time series technique [7] to break down 

this record as follows: 

Where st is a daily periodic traffic 

component, satisfying st = st+d for t = 1; 

2; ; nd with the period d = 144 that 

corresponds to one day, mt is a trend 

traffic component, and rt is the residual 

component comprising the noise and the 

impacts of exceptional occurrences. In the 

absence of seasonality, we may estimate 

the trend component from the remaining 

series to complete the decomposition. 

First, we use a simple moving-average 

filter to estimate the trend traffic 

component, as follows: emt = 0:5xtq + 

xtq+1 + + xt+q1 + 0:5xt+q =d; where q = 

d=2 = 72 and q t n q. We then compute the 

average!k of the deviation series f(xk+jd 

emk+jd): q k + jd n qg for k = 1; 2; ; d. 

The average daily traffic pattern at the 

cellular tower may be expressed as sk =!k 

d1 Xd i=1!i; k = 1; 2; ; d; sk = skd if k > d. 

When the periodic component of the 

original series is subtracted from it, giving 

us the de-seasonality series, we get dt = xt 

st; t = 1; 2; ; n: 

 

Take into account that the monthly series 

fdtg is used to determine the weekly trend 

of mobile traffic statistics. Therefore, we 

take the original four-week data fdtg and 

calculate its one-week average, b dt. 

 

The weekly trend is then estimated using 

the moving average series b dt 1008 t=1. 

Time series trend estimation may be 

achieved in two broad ways: either by 

using a finite moving average filter to 

smooth the data or by using a function 

model to simulate the data. It is difficult to 

model the mobile traffic series using a 



universal function due to the fact that its 

trends differ between cellular towers. 

The former approach, then, is the most 

appropriate one for our data. An optimistic 

positive integer p is assumed here. Two-

sided moving average 

 

Decomposition in one week is shown as an 

example in Fig. 6. A visual comparison of 

the original traffic data xt and the periodic 

component st is shown in Fig. 6 (a). 

Starting with the 

 

Based on the findings shown in Fig. 6 (a), 

we can see that despite the fact that the 

original traffic statistics are quite noisy, 

there is a daily periodic component that 

displays a two-peak pattern. 

The mt component of the weekly trend, 

shown in Fig. 6 (b), clearly shows that 

weekday traffic is greater than weekend 

traffic. The decomposition's one-week 

residual component rt is shown in Fig. 

6(c). Unpredictable fluctuations in the 

volume of traffic may be accounted for by 

the residual component. For all four 

weeks, the autocorrelation of the residuals 

is shown in Fig. 7 to be less than 0.1, 

suggesting that rt is very similar to white 

noise. 

 

Fig. 7. Autocorrelation of the residuals. 

B. Clustering 

We aim to identify the key traffic patterns 

among 6,400 

cellular towers according to both the 

seasonal and weekly 

trend components obtained from the above 

decomposition. As 

pointed out previously, this task is difficult 

for three reasons. 

Firstly, we generally have no idea how 

many main patterns 

(a) Periodical component and original 

series (b) Trend co 

(b)  
(c) Fig. 6. Illustration of 

decomposition on the traffic 

patterns of one base station. 

(d)  
Algorithm 1 Agglomerative Hierarchical 

Clustering. 



 

 

 
should be determined for thousands 

of towers' worth of data. 

In addition, cell towers are often 

situated in densely populated 

metropolitan areas, therefore tower 

traffic patterns may be very 

variable. 

 

each other because to variations in 

user population and geographic 

dispersion. Furthermore, there are 

some "poor" towers with missing 

traffic data. It's difficult to know 

how to 'kick' these abnormal people 

out. We design a two-stage process 

to reliably recognize the most 

important patterns in the traffic 

logs: Two steps are involved here: 

1) counting, 2) locating, and 3) 

confirming the most important 

patterns. 

1) Recognize Commonalities: The 

Identifier is the heart of our mining 

infrastructure, which extracts 

useful information from network 

data. 

Because it is not necessary to know 

the whole number of clusters 

beforehand, hierarchical clustering 

[8] was selected as our identifier. 

In hierarchical clustering, each 

input point is treated separately as a 

cluster, and then the closest clusters 

are merged into larger ones in an 

iterative process from the bottom 

up. In Algorithm 1, we see how 

this hierarchical grouping is 

accomplished. 

Evidently, knowing when to stop 

the clustering process is a crucial 

technological difficulty for this 

kind of hierarchical clustering. To 

find the right amount of clusters, 

we use the Davies-Bouldin index 

(DBI) [9]. We'll use vector notation 

to express a series for ease of 

writing; for example, the ith mobile 

traffic sequence will be written as 

Xi[t]. 

may also be written as Xi. The DBI 

is specified using this notation style 

as 



 
where Ti is the total number of 

towers in the ith cluster, R is the 

total number of clusters, and Xi is 

the traffic data from the ith cellular 

tower. When 

 

As a result, we can determine the 

optimal amount of patterns while 

still achieving the lowest possible 

DBI. Important patterns may be 

isolated from the whole set by 

applying a set of filters to the data. 

a) Patterns of Periodic 

Components: Fig. 8 (a) displays the 

DBI as a function of the number of 

clusters, where the least DBI 

suggests that the optimal number of 

clusters is 1,040 for the periodic 

component of the mobile traffic. 

We extract the five main patterns 

from all the clusters by treating the 

groups of more than 100 cellular 

towers as daily traffic patterns. 

These five main patterns, shown in 

Fig. 8 (b), are representative of 

daily traffic fluctuations and cover 

the hours 00:00 to 24:00. You'll see 

that all of them have a noticeable 

lull in activity between midnight 

and sunrise, when most people are 

asleep, but that their peak activity 

times vary widely. 

In particular, Pattern #1 

experiences its highest volume of 

mobile traffic in the late evening, 

Pattern #2 exhibits two rush hour 

peaks at around 8:00 and 18:00, 

Pattern #3 has a lasting stable high 

traffic from 8:00 to 16:00, Pattern 

#4 displays high traffic during the 

day, especially during lunch and 

dinner, and Pattern #5 appears to 

show the mixed features of the first 

four patterns. 

FIGURE 8: The cumulative 

distribution function (CDF) of the 

correlation distance between 

towers in each cluster and the 

cluster centroid (c). Nearly all the 

towers in each cluster are located a 

safe distance from the cluster's 

center, since all the curves reach 

100% at a distance less than 0.2. 

Thus, the clustering result may be 

trusted. 

b) Trend Component Patterns: The 

weekly trend reveals the ebb and 

flow of mobile traffic on a weekly 

time scale. To examine the weekly 

trend part of the traffic, we use the 

same identifier we used before. 

However, in this case, we have 

some a priori knowledge about two 

obvious key patterns: during the 

weekdays, people go to their 

workplaces, for example in 

business districts, and the traffic 

reaches high values in weekdays at 

these places, while during the 

weekends, people go to 

entertainment places or stay in 

residential areas, and the traffic 

reaches peak values in weekends, 

at these places. Because of this, we 

can limit the number of key 

patterns to two, and Fig. 9 shows 

the two key patterns discovered 

using clustering for the weekly 

trend part of the traffic. It's clear 

that Pattern #1 has steady, high 

traffic throughout the week but 



much lower numbers on the 

weekends, whereas Pattern #2 has 

low traffic during the week and 

high values during the weekend. 

The two weekly trends shown here 

are direct reflections of human 

urban activity. 

 

Fig. 8. The DBI as the function of the 

number of clusters and the key daily 

patterns obtained by the clustering for the 

periodic component of the traffic. 

TABLE I 

 
We then classify the daily patterns 

by the particular urban function in 

order to establish a connection 

between the detected patterns and 

normal human urban activities. 

 

thematically connected domains. 

We link the everyday rhythms to 

the interplay of four essential city 

activities. The detected patterns are 

then further verified by examining 

the correlation between daily and 

weekly trend patterns. 

1. Identify Recurring Activities and 

Name Them a) Figure 8 depicts 

five different daily traffic patterns, 

each of which has to be placed in 

its geographical context before we 

can make any meaningful 

connections between them and the 

regular activities of urban dwellers. 



Typical rush hours in cities 

correspond to the two peaks in the 

daily pattern #2 shown in Fig. 8 

(b), which occur at 8:00 and 17:00-

18:00. So, we might speculate that 

the Shanghai transportation 

function region is involved in this 

everyday trend. Points of interest 

(PoI) distribution is used to 

characterize the geographical 

elements of each daily pattern, 

allowing for more precise labeling. 

One of the largest providers of 

online map services, Baidu Map, 

supplies us with 23 different types 

of Points of Interest (PoI) including 

restaurants, hotels, shopping 

centers, entertainment, sports, 

schools, tourist attractions, tourist 

development zone, finance areas, 

offices, corporates, factories, 

industrial areas, science park, 

economic development zone, high 

technology development zone, 

residential areas, living services, 

towns, villages, subways, and 

overpasses. 

We start by counting the PoIs 

within 200m of each cell tower for 

every daily pattern. Afterwards, we 

standardize the points of interest 

across all clusters. Table I presents 

a summary of the PoI distribution 

for all of the different patterns. To 

make the average number of PoI 

more legible, we increased it by 

1000. All three of the most severe 

forms of PoI are indicated by 

shades of orange, with the most 

severe ones appearing at the top of 

the list for each daily pattern. It is 

evident that the distribution of 

points of interest (PoI) varies 

widely amongst patterns, and we 

may assign names to patterns based 

on the primary categories of PoI 

they include, such as Residential 

Area, Transport Area, Office Area, 

Entertainment Area, or Mixture 

Area. 

Location of Households: Towers in 

cluster#1 mostly serve residential 

and commercial buildings, as 

shown in Table I. When taken in 

conjunction with the evening-high 

mobile traffic patterns shown in 

Fig. 8 (b), we can conclude that 

this cluster may be classified as a 

residential region, where people 

typically return after a day at the 

office. 

The subway station point of 

interest (PoI) is a substantially 

larger transport area than the other 

PoIs in cluster #2. Figure 8 (b) 

depicts the two daily traffic peaks 

that occur while individuals are 

traveling to and from their homes 

and places of employment. As a 

result, we may classify this 

grouping as a transportation hub. 

Corporate and financial services 

are the most popular points of 

interest in the third office cluster. 

Also, keep in mind that the volume 

of this daily pattern remains strong 

all the way through '9 to 5' This 

allows us to connect the dots 

between this cluster and Shanghai's 

commercial districts. 

Cluster #4 is heavily skewed 

toward points of interest (PoIs) 

related to dining and retailing. As 

can be seen in Fig. 8, this cluster's 

peak hours for traffic are just 

around lunch and evening (b). 

From these indicators, it's safe to 



classify this location as a tourist 

hotspot. 

Cluster #5's Points of Interest 

(PoIs) are dispersed quite 

uniformly among several 

functional zones, and the daily 

traffic patterns in these areas 

demonstrate a curious admixture of 

 
from the first to the fourth cluster. 

Therefore, this cluster fits the 

criteria for a mixed region. 

2. b) Identify the weekly pattern 

Patterns: Weekly tendencies 

 

have been sorted up into the 

weekday-high and weekend-high 

categories, respectively. The 

former is more often linked with 

commercial and industrial settings, 

whereas the latter is more often 

connected with private homes. 

c) The Connection Between 

Weekly and Daily Trend Patterns 

Here we calculate the ratios of the 

two weekly trend patterns to each 

daily pattern, as shown in Fig. 10, 

to investigate the connection 

between the two time scales (a). It 

is interesting to note that the 

weekend-high trend pattern 

accounts for 66% of towers in 

residential areas (daily pattern#1) 

and 78% of towers in entertainment 

areas (daily pattern#4), while the 

weekday-high trend pattern 

accounts for nearly 90% of office 

areas (daily pattern#3) and over 

60% of transport areas (daily 

pattern#2). These findings are 

consistent with what we know 

about human behavior in urban 

settings, providing more support 

for our categorization. 

As was previously discussed, there 

are 23 POI values distributed over 

five functional areas. Additionally, 

some of these 23 unique POIs 

(finance, offices, corporations) are 

common high POIs during the 

weekdays, while others 

(residential, live service, 

entertainment) are typical high 

POIs during the weekends. Figure 

10 (b) displays, for each functional 

area, two ratios: the ratio of the 

sum of the weekdayhigh POI 

values to the total of all POI 

values, and the ratio of the sum of 

the weekendhigh POI values to the 

sum of all POI values. Figure 10(b) 

provides unambiguous 

confirmation that our pattern 

categorization is correct. 



Predictions, C. 

Now, we use the clustering result 

as the foundation for a mobile 

traffic forecasting system. The 

mobile traffic series is 

nonstationary and exhibits 

periodicity, hence we use the 

seasonal autoregressive integrated 

moving average (SARIMA) model 

[10] to accomplish this. ARIMA is 

the abbreviation for the 

overarching version of the 

SARIMA model (p; d; q) 

�(P;D;Q) There are (P;D;Q) terms 

representing the seasonal portion of 

the model, where P is the number 

of seasonal autoregressive terms, D 

is the number of seasonal 

differences, and Q is the number of 

seasonal moving average terms, 

and there are (q; d; q) terms 

representing the non-seasonal 

portion of the model, where q is the 

number of non-seasonal 

autoregressive terms, d is the 

number of non-seasonal 

differences, and q is the number of 

non-season 

From the mobile traffic series 

fxtg4032 t=1, we are able to 

reliably extract the SARIMA 

model ARIMA(1; 0; 1) (1; 1; 

1)1008. 

 
where at is the white-noise series, 

m0 = 1008, B stands for the 

backward shift operator, and Bxt = 

xt1 establishes the parameters ar, 

sar, ma, and sma, respectively. 

 

minimum arithmetic mean squared 

error 

Using the aforementioned model, 

we can forecast the traffic for the 

next week using data from the past 

three weeks broken down into four 

daily patterns. The forecasting 

results are shown in Fig. 11, and 

the logarithmic traffic series is 

utilized to improve readability. 

Across all four configurations, it is 

evident that the predicted series 

closely matches the underlying 

actual logarithmic traffic series. 

The reliability of the forecast is 

then measured objectively. 

Let us define resident area (rsd) as 

the number of buildings designated 

as such, with the associated index 

set to be Nrsd. In this case, we get 

a genuine logarithmic series of 

traffic counts for each tower k: x(k) 

= 1; x(k) = 2;... = x(k) = 1008 

median value (k). The median of 

the actual traffic counts for the 

residential areas is then determined 

by using the formula 

 
We summary the MSEs of the classified 

model predictions for 



the four daily traffic patterns in the first 

row of Table II. The 

 
ratios of these four MSEs over the 

corresponding mean values 

of the four daily-pattern traffic series are 

listed in the second 

row of Table II, while the ratios of the 

four[MSE values over 

the corresponding mean values of the four 

daily-pattern traffic 

series are given in the third row of Table 

II. 

 

As a last step, we add mobile traffic 

forecasting as an application to our system 

and use cellular label data to dramatically 

boost the performance of the ARIMA 

model. 

 

towers accumulated in the Clustering 

phase. We do this by training four separate 

forecasting models, each tailored to one of 

four distinct daily trends. We choose a 

model for a given set of input traffic data 

from a single tower based on the tower's 

label. Our experimental results on our 

dataset demonstrate that this method yields 

significantly improved prediction 

precision. 

D. Taking Note of the Leftovers 

We now show our technique for 

determining, given a cellular tower's 

residual traffic data, whether or not an 

accident or unusual event occurred. The 

residual and user count for a chosen cell 

tower in the HongKou area are shown in 

Fig. 12. As can be seen in Fig. 12 (b), 

there are three distinct peaks in the number 

of users that correspond to distinct crowd 

events; however, due to the high level of 

noise in the residual component, these 

three events cannot be identified from the 

residual alone. A similar issue is seen 

when contrasting Figure 12 (c) and (d), 

where a surge in the number of users is 

observed on the second Saturday but is 

obscured by the residual component. 

We establish a threshold of 4 standard 

deviations from the mean for each residual 

series to filter out the noise, which 

represents meaningless random 

occurrences in the residual component. 

When the residual component stays over 

the threshold for more than 30 minutes, we 

classify it as an abnormal occurrence. If 

we assume a sampling interval of 10 

minutes, then 3 samples in a row would 

represent a sampling interval of half an 

hour. 

 



 

To put our cellular-based anomaly 

detection system to the test, we first 

identify three cellular towers near 

gymnasiums or other public venues where 

mass gatherings take place. 

 

element of mobile traffic that doesn't 

contribute much. Table III's RD (residual 

detection) column shows if the crowd 

event can be deduced from its matching 

residual series. Tower No.1 is situated near 

Hongkou Stadium, Tower No.2 is close to 

the Mercedes Benz Cultural Center, and 

Tower No.3 is close to the Luwan 

Gymnasium. We can thank soccer for the 

odd occurrences. 

Thi 

 

 

 

events like concerts or sporting 

competitions that result in a spike in use. 

Table III demonstrates that our technique 

is able to accurately identify the vast 

majority of occurrences. 

 

effective and trustworthy methodology 

We then use our algorithm to identify 

unusual occurrences across all cell towers. 

Mapped out in Fig. 13 is the location of all 

the weird things that happened this month. 

It is clear from the heat map that most 

anomalous occurrences take place in and 

around the city's core, and that their 

distribution is highly correlated with the 

consumption of mobile traffic shown in 

Fig. 4. This suggests that anomalies tend to 

take place in areas with high levels of 

mobile traffic. Figure 14 displays the 

means and standard deviations of outliers 

throughout a four-week period. Weekends 

have higher averages than weekdays, 

which makes sense given that concerts and 

other special events tend to take place 

then. An further fact that has been noticed 

is that the standard deviation is highest on 



Sunday. This finding suggests that the 

frequency of unusual occurrences varies 

throughout weeks. Both the temporal and 

geographical patterns of the identified 

abnormalities are consistent with human 

urban activity. 

Our system's primary functions—traffic 

forecasting and anomaly detection—are 

also available as web-based products. With 

only a few inputs, our system can model 

and name every cell tower in a given area. 

Using input traffic data from a single 

tower, we may choose a prediction model 

in accordance with the label, and then 

update the model's input data to reflect 

traffic over the last three weeks (or 

whatever time period is of interest). Our 

system configures variables used for 

outlier detection. 

 

use past information as the basis. Using an 

efficient decomposition strategy, our 

system is able to breakdown the most 

recent traffic data every few minutes (or, 

alternatively, take up the most recent one 

week's data as input) and identify patterns. 

 

inconsistencies in the noise component in 

real time. Therefore, our system can 

provide live traffic forecasting and 

anomaly detection based on a previous 

mobile traffic dataset. 

IV. CONCLUSION AND 

IMPRESSION 

We have so far derived two natural weekly 

trend patterns from the trend components 

of our traffic data, and five daily patterns 

from the regular periodic components. 

The human activities and surrounding 

environments that contribute to these 

traffic patterns are the focus of the next 

section. 

1) Recognizing Daily Routines 

1) Seasonal variation: Daily traffic patterns 

often show both high and low points 

throughout the day. Table IV details the 

daily patterns and when they peak and 

drop. 

Table IV shows that, across all patterns, 

the lowest use occurs between 4 and 5 am, 

when most users are fast asleep. There is a 

peak period in the residential area at 21:00, 

when people return home from work, and 

two peaks in the transportation sector at 

8:00 in the morning and around 5:00 to 

6:00 in the evening, which correspond to 

the two rush hours of the day. There is 

constant, heavy foot traffic in the 

workplace, with no discernible "peak 

period." 

There are two major periods of day when 

people congregate at entertainment venues; 

these are around noon and six o'clock, 

when people typically eat lunch and 

supper. 

2) The ratio of daytime to nighttime traffic 

volumes: Fig. 15 (a) displays, for each 

daily pattern, the volume of traffic during 

the daytime hours of 7 a.m. to 7 p.m., and 



the volume of traffic during the nighttime 

hours of 7 p.m. to 7 a.m. Daytime traffic 

volumes are clearly greater than nighttime 

volumes for all patterns except residential 

areas. This squares well with the way that 

people often go about their everyday lives. 

Figure 15 (b) shows that the percentage of 

daytime to nighttime traffic varies 

significantly between patterns. More 

specifically, the ratio is around 0.8 in 

residential regions, which is much lower 

than the ratios in transportation hubs, 

business districts, and entertainment 

districts. Human everyday activities 

provide an excellent explanation for this 

phenomenon; during the day, individuals 

travel to areas like employment and 

amusement, and at night, they return 

home. The greatest ratios, up to 1.4, are 

seen in business districts, when most 

individuals are away at work. 

Section B: Recognizing Weekly Trend 

Patterns 

There are two distinct weekly trends 

discernible in the weekly trend 

components: a weekday-high trend and a 

weekend-high trend. In Fig. 16 

 

We provide one week's worth of traffic 

based on these two typical weekly 

patterns. From Fig. 16 (a), we can see that 

the weekend-high pattern has lower traffic 

than the weekday-high pattern, and vice 

versa for the weekday-high pattern (b). As 

can be seen in Fig. 16 (a), the weekdays' 

traffic peaks in the late afternoon, 

suggesting that the residential pattern is the 

primary daily pattern contributing to the 

weekend's high pattern. In Fig. 16 (b), 

 

 

Workday traffic is much greater than non-

workday traffic, suggesting that the 

workplace schedule is the primary 

contributor to the weekday-high trend. 

 

Figure 17 depicts the relative contributions 

of the two weekly trends' individual daily 

patterns. According to Fig. 17 (a), the most 



common of the four common daily 

routines (1, 2, 3, and 4) is the 

 

 

The office pattern (#3), which occupies 

29.6% of the towers, is the single most 

important factor in the weekday-high 

pattern, followed by the entertainment 

pattern (#4). 

 

whereby 26.4 percent of the buildings are 

used as storage space. It makes perfect 

sense that the office pattern is the primary 

driver of the weekday-high pattern, as this 

reflects the primary activities of most 

people during the week, while the 

entertainment pattern also contributes 

heavily to the weekday-high pattern, both 

because people need to eat at lunch and 

dinner every day and because there are a 

lot of towers in the entertainment district. 

On the other hand, as shown in Fig. 17 (b), 

the weekend-high pattern is driven mostly 

by the residential pattern (#1) and the 

transit pattern (#2). This is a very accurate 

depiction of how most people spend their 

free time on the weekends. Interestingly, 

the mixed pattern (#5) accounts for almost 

20% of the towers in both the weekday-

high and weekend-high patterns. Because 

of this, mixed areas are what they are. 

FIVE: CONNECTED DOCUMENTS 

Many studies have focused on extracting 

information about urban environment 

dynamics and social events from digital 

 

marks left behind [15]. Here, we classify 

the relevant literature based on four 

criteria: Analyzing Traffic Data 

enabled apps; digital footprints used to 

identify urban dynamics; time series 

techniques utilized to analyze mobile 

traffic data; and event detection from 

mobile traffic. 

 



Data on cellular traffic flows has been put 

to use in several fields. Personal 

characteristics such as sexual orientation, 

race, religion, and political leanings may 

be inferred from the data [5]. Human 

movement patterns have been modeled 

using CDRs [3, 11], with the results 

indicating a high degree of temporal and 

geographical regularity [3] and a high 

degree of prospective predictability [11]. 

The research [4] examines 3G cellular 

networks with the intention of elucidating 

the habits of mobile data users and finds 

that a tiny percentage of very active users 

account for the vast bulk of the network's 

data consumption. Books [12], [13] use 

CDR statistics to infer and categorize land 

use. The utilization of cellular network 

traces enables further applications, such as 

the inference of friendship network 

structure [14], the comprehension of 

mobile user browsing activity [14], and the 

optimization of content delivery depending 

on user location [19]. 

CDRs, social media data, and mobile 

traffic data are the three most often utilized 

forms of digital footprints for uncovering 

human activity patterns in metropolitan 

areas. In order to simulate human activity 

patterns [3, 21] and to estimate population 

dispersion [21], CDRs are used. CDRs 

lack temporal density compared to mobile 

traffic data. Mobile social instant 

communication programs have largely 

supplanted phone calls as the major means 

of contact in metropolitan areas, thanks to 

the proliferation of mobile Internet. The 

telephone has been mostly replaced by 

instant messaging apps, which many 

prefer. In addition, the proliferation of 

mobile payment methods and the constant 

flow of mobile traffic that cities generate 

have cemented the Internet's dominance 

over all aspects of urban social life. As a 

result, there is a wealth of information 

about people's behaviors available in 

mobile traffic data. Based on a social 

activity dataset and GPS travel records, the 

study [22] offered a technique to recognize 

urban events. The information collected 

from social media sites provides firsthand 

evidence of the actions of specific users. 

Examples include the visual depiction of 

urban occurrences in Twitter posts. 

However, social media data are more 

challenging to analyse and mine than 

mobile traffic data since they are often in 

text, audio, or video format and include a 

great deal of duplicate information. 

Meanwhile, since they are a compilation of 

data from many different users, mobile 

traffic statistics are better at protecting 

citizens' privacy. A further use for mining 

the contexts and behavior information 

from mobile traffic data is shown by the 

study [20], which developed a system to 

categorize service usages using encrypted 

Internet traffic data of mobile messaging 

Apps. The disintegration of traces of 

human activity in urban areas has been the 

subject of several studies. To dissect a 

human endeavor, the authors [17, 22] offer 

a non-negative tensor factorization 

method. 

tensor into more fundamental tensors of 

daily life. On the other hand, our system is 

able to pick the number of fundamental 

patterns on its own, which is an advantage 

over other methods that force you to 

choose an arbitrary number. An image 

segmentation method was used to mine 

social events from a 3D matrix [18] 

constructed to represent the time, location, 

and likelihood of a social event based on a 

probabilistic model. This algorithm did not 

clearly dissect the human traces and did 



not take into account additional data like 

daily pattern or long-term trend, unlike our 

own. By splitting the original cell phone 

activity series into the seasonal 

communication series and the residual 

communication series, the research [2] is 

able to deduce aspects of urban ecology 

from spatial-temporal cell phone activity 

data. In contrast to the approach used here, 

the mobile phone traffic series is 

decomposed in [2] by first undergoing a 

frequency-domain transformation using 

FFT, from which the primary frequency 

components are then extracted. Our report 

proves that mobile traffic trends reflect 

long-term fluctuations, which are 

overlooked in this study. In order to 

analyze mobile traffic data, time series 

analysis is often used. This is particularly 

true for mobile traffic forecasting. While 

work [24] models and forecasts real 

wireless traffic, such as GSM traffic, using 

seasonal ARIMA models, work [23] 

proposes a technique for traffic forecasting 

based on multiple regression model for 

time-series. We also use an autoregressive 

integrated moving average (ARIMA) 

model, tailoring the model's parameters to 

actual daily trends. We also demonstrate 

that our model is capable of producing 

accurate predictions of mobile traffic 

usage. To break down a human activity 

tensor into fundamental life pattern 

tensors, [17] [22] present a non-negative 

tensor factorization technique. On the 

other hand, our system is able to pick the 

number of fundamental patterns on its 

own, which is an advantage over other 

methods that force you to choose an 

arbitrary number. An image segmentation 

method was used to mine social events 

from a 3D matrix [18] constructed to 

represent the time, location, and likelihood 

of a social event based on a probabilistic 

model. This algorithm did not clearly 

dissect the human traces and did not take 

into account additional data like daily 

pattern or long-term trend, unlike our own. 

By splitting the original cell phone activity 

series into the seasonal communication 

series and the residual communication 

series, the research [2] is able to deduce 

aspects of urban ecology from spatial-

temporal cell phone activity data. In 

contrast to the approach used here, the 

mobile phone traffic series is decomposed 

in [2] by first undergoing a frequency-

domain transformation using FFT, from 

which the primary frequency components 

are then extracted. Our report proves that 

mobile traffic trends reflect long-term 

fluctuations, which are overlooked in this 

study. In order to analyze mobile traffic 

data, time series analysis is often used. 

This is particularly true for mobile traffic 

forecasting. While work [24] models and 

forecasts real wireless traffic, such as 

GSM traffic, using seasonal ARIMA 

models, work [23] proposes a technique 

for traffic forecasting based on multiple 

regression model for time-series. We also 

use an autoregressive integrated moving 

average (ARIMA) model, tailoring the 

model's parameters to actual daily trends. 

We also demonstrate that our model is 

capable of producing accurate predictions 

of mobile traffic usage. A large amount of 

work has gone into using cellular traffic 

analysis to spot irregularities. Standard 

statistical methods are used to an analysis 

of phone data to discover how often and 

where unusual occurrences have occurred. 

 

techniques from percolation theory to 

characterize these spatial and temporal 

oddities. There is a correlation between the 



sort of event and the origins of those 

attending, as shown in [26], which 

analyzes over 1 million cell-phone traces 

to study crowd migration during special 

events. The research [27] examines how 

communities react to shocks from the 

outside world, like as terrorist bombings 

and natural disasters, by tracking how 

people's patterns of movement and 

communication alter in real time. Our 

study effectively extracts the root causes of 

anomalous events by deconstructing 

mobile traffic series, and our anomalous 

event detection approach has been used to 

identify out-of-the-ordinary activities, such 

concerts and matches, in mobile data. 

In conclusion, we provide a novel 

framework for studying and modeling 

urban functional zones and human 

activities using data on massive amounts 

of cellular mobile traffic gathered by ISPs. 

There are three main ways in which our 

work is novel: At the outset, we use a 

massive dataset of mobile traffic. Our 

dataset better reflects urban dynamics in 

the mobile age, and it has finer temporal 

and geographical resolution than previous 

digital records. To further examine mobile 

traffic statistics, we use a novel approach 

and use a times series decomposition 

technique. On the one hand, we use 

periodic and trend components to represent 

human regular activity patterns over many 

time periods in urban environments. 

Instead, we focus on the "residual" part of 

the model, where the impact of random 

occurrences is obscured by background 

noise. This approach gives a thorough 

understanding of interactions between 

human activities and network dynamics, 

and, to the best of our knowledge, has not 

been applied in mobile traffic analysis in 

the open literature. Finally, we present a 

methodology for investigating mobile 

traffic records that incorporates human 

activity pattern mining, mobile traffic 

forecasting, and anomaly detection. 

INTERLUDE: Section VI. Conclusions 

In this article, we investigate the link 

between urban dwellers' mobile data traffic 

and their day-to-day routines. 

 

systemic and all-encompassing setting 

based on a massive collection of mobile 

traffic logs with a fine granularity. We 

have developed an effective system that 

combines the processes of traffic pattern 

clustering and labeling, mobile traffic 

forecasting, and event detection by using a 

generic time series decomposition 

approach. First, we do a natural 

decomposition of the traffic series into a 

daily periodic component, a weekly trend 

component, and a residual component. We 

then isolate five primary daily activity 

patterns that are intrinsically linked to 

many domains of human functioning. 

Through the use of an ARIMA model and 

the training of several models based on 

historical data, we are able to considerably 

enhance the accuracy with which we can 

estimate mobile traffic. 

In addition, the trend component's two 

weekly trend patterns are familiar to us, 

which again represent the underlying 

weekly human activities in the actual 

world. Finally, we utilize the residual 

component to identify outliers generated 

by abnormal human behavior, and we 

demonstrate that our anomalous event 

identification approach can effectively 

identify abnormal human behavior from 



the noisy residual-component series that is 

characteristic of the actual world. 

Our system is capable of handling large 

offline mobile traffic databases while 

simultaneously providing online traffic 

forecasts and event detection services. As 

a result, our research has laid the 

groundwork for efficiently managing large 

quantities of mobile traffic data and has 

offered a deep dive into the complex 

interplay between mobile data traffic 

consumption and human activities in the 

modern urban setting. 
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