

 ISSN2321-2152www.ijmece .com
 Vol 6, Issue 3Aug 2018

Programming by Choice:
Urban Youth Learning Programming with Scratch

 Imtiyaz Khan,MohdIrshad, Gayatri,

ABSTRACT
This article introduces Scratch, a block-based programming language with a visual interface that was created to make it easier for non-expert

programmers to manipulate media. We present an 18-month long study of Scratch programming by urban kids (ages 8-18) in an after school

organization called a Computer Clubhouse. We analyzed 536 Scratch projects created during this per iod and found that students were able to

acquire fundamental programming principles without the aid of teachers or mentors. We examine the consequences for teaching p rogramming

at after-school settings in impoverished neighborhoods, as well as the reasons why urban adolescents pick Scratch over the numerous other

software packages accessible to them.

Categoriesand Subject Descriptors
First Grade [Computer and Information Science Education]: Computer Science Instruction

Keywords
Scratch, accessibility, and beginner-friendly programming environments.

INTRODUCTION
Mentoring, altered curriculum, tool creation, outreach initiatives,

and programming courses for non-majors have all been

considered as potential solutions to the problem of low computer
science enrollment in K-12 and higher education. Learning to

code at community tech centers that provide free daily access is

one area that has garnered surprisingly little attention. Summer

camps and after-school activities have been more well-liked but

have had shorter lifespans [1; 15]. Here, the student has more

control over the pace, content, and length of their coding

sessions than they would in a traditional classroom setting. With
the inclusion of this notice and the complete citation on the first

page, you have permission to make digital or physical copies of

all or part of this work for personal or classroom use without

payment. Other forms of duplication, publication, hosting, and

distribution to lists are prohibited without express permission

and/or payment. as opposed to being part of a mandatory school

curriculum. While there has been much study of computer

science education at the university level, little has been done to
investigate or record extracurricular options for pre-college

students to learn computer programming.

More chances to study computer programming may be made

available via summer camps, after-school programs, and

community technology centers. Most schools rely on technology
to provide curriculum, but few provide low-income pupils with

access to programming education [3]. The fact that students only

spend 9% of their formative years in school is another factor that

prompts one to think about other contexts that impact education

[14]. Finally, adolescents who struggle in a classroom setting

might find success in extracurricular activities.

This study explores the use of Scratch, a block-based
programming language that helps new programmers manipulate

media [11], in an urban after-school technology club called

Computer Clubhouse. We compiled a database of 536 Scratch

projects made by kids from a single Computer Clubhouse and

studied how they evolved in terms of the commands and ideas

they were using. We also conducted interviews with Clubhouse

regulars to get their take on programming and Scratch. We cover

the reasons why young people select programming over other
applications and what newbie programmers may learn outside of a

classroom setting.

 Department of cse

imtiyaz.khan.7@gmail.com, mohdirshadislclg@gmail.com, gayatri12islclg@gmail.com,

ISL Engineering College.
International Airport Road, Bandlaguda, Chandrayangutta Hyderabad - 500005 Telangana, India.

mailto:imtiyaz.khan.7@gmail.com
mailto:mohdirshadislclg@gmail.com
mailto:gayatri12islclg@gmail.com

1. SCRATCH
The MIT Media Lab's Lifelong Kindergarten Group and
YasminKafai's group at UCLA developed Scratch together.

Although it is geared towards beginners, Scratch is not the first

environment or language of its kind. In fact, Kelleher and Pausch

[7] and Guzdial [4] provide exhaustive overviews of the vast

historical background of various advances. Scratch expands upon
Logo's [8] concepts with a drag-and-drop interface reminiscent

of LogoBlocks [2] and EToys [13], rather than the coding

technique used by Logo itself. Scratch is a programming

environment designed with kids in mind, with an emphasis on

media tinkering and the encouragement of projects like animated

storyboarding, game design, and interactive presentation making.

The two main components of a Scratch project are the stage

(background) and the sprites (characters). Images, audio,
variables, and scripts are all stored separately in each individual

object. Spreading and trading sprites is made simple by this

group.

Stacks of blocks are created by dragging and dropping command
blocks from a palette into the scripting pane. This is similar to

putting together a puzzle. To activate a block or a group of

blocks, just double-click on the desired block or stack. When a

program starts up, a certain key is pushed, or the mouse is

clicked on the sprite, the hat block on top of the stack is

activated. Due to the fact that numerous stacks may operate
simultaneously, most Scratch users are likely making use of

multiple threads without even recognizing it.

There are four distinct regions on the Scratch screen (shown in
Figure 1). The performance area is on the right. A full-screen

presentation of the stage may be accessed by a button on the bar

below the stage. There's a section down there with preview

images of all of the project's sprites in it, just below the stage. If

you click on a preview, the appropriate sprite will be selected.

The sprite's script, costumes (graphics), and noises may all be

seen and edited in the center window. To the left of the

programming area is a palette containing several command
blocks. There are eight different types of colors to choose from.

The inspiration for this user interface design came from a need to

concretize the core ideas behind Scratch. The command palette's
persistent visibility encourages tinkering. If you find a command

in the palette that seems intriguing, just double-click it to learn

more about it. As the scene progresses, the user may see relevant

stacks in the scripting area becoming highlighted. The user is

given a process model of how their scripts are read by the

computer, which is aided by the simultaneous visibility of the

palette, writing area, and stage.

Figure1:ScreenshotofScratchInterface

2. There are about 90 different commands available in Scratch,

and they cover a wide range of topics, from relative

movement (a la the Logo turtle) to absolute positioning with

Cartesian coordinates, from image transformations

(rotation, scaling, and effects like Fisheye), to cell

animation (the switching between images), from recorded-

sound playback to musical note and drum sounds, and even
a programmable pen. For the Scratch user, this provides a

rich framework in which to develop a deeper grasp of

numbers, since many of the instructions need them as input.

If you use a negative parameter with the move command,

for instance, the sprite will travel in the opposite direction.

Currently, only basic arithmetic, comparison, and Boolean

operations are implemented; however, more complex
scientific operations (such as sine) are on the roadmap. A

sprite's proximity to an edge, another sprite, or a certain

color may be detected with the use of special sensor blocks.

3. relay information about the position of the mouse or the

pressing or releasing of a key.

4. Scratch's control structures include if/else statements, while
loops (with varying iteration lengths and a variety of

conditions), and event triggers (when-clicked, when-key-

pressed). Named broadcasts are used for communication. If

one sprite yells "you won!" another one can arrive on stage

and start singing a triumphant tune. Multiple scripts may be

activated by a single transmission. An easy method of

synchronization is provided by a variation of the broadcast
command that waits for all activated scripts to finish before

continuing. Additionally, Scratch allows for two distinct

kind of variables. While global variables are accessible to

all objects, sprite variables are only exposed to scripts

running inside a specific sprite. Sometimes, broadcast is

used in tandem with global variables to transfer information

across sprites.

5. SCRATCHINTHECLUBHOUSE

6. In January of 2005, we brought Scratch to a Computer

Clubhouse in a South Central Los Angeles shop. One of the

city's poorest neighborhoods sends its young people (8-18)

to the Clubhouse, which provides services in many

languages. After school, kids who sign up to be members of

the Computer Clubhouse don't have to worry about paying

anything out of pocket [12]. Activities include playing

Microsoft Xbox, downloading photographs, producing

music at a studio, playing board games, editing photos in

Adobe Photoshop, creating roller coaster games in RPG

Maker, or developing 3D environments in Bryce 5 are all

examples.

7. Despite the widespread availability of several kinds of

programming tools prior to the introduction of Scratch,

programming activities were not part of the Clubhouse array
of activities [6]. Scratch became the most popular design

tool at the Clubhouse during the first two years of the

project, and local programming gurus developed during this

time. There wasn't a lot of formal "teaching" of

programming ideas; rather, kids worked on topics they were

interested in and asked for help from adults only when they

needed it. Every two or three months, we had a Scratch-a-

thon when everyone in the clubhouse spent three to four
hours using Scratch and then presented their creations to the

rest of the group. Clubhouse participants used Scratch to

create anything from video games and music videos to

greeting cards and cartoons [9]. For instance, Kaylee, a

female software designer of the ripe old age of 13, based her

dance video "k2b" on a clip from a Gwen Stefani music

video titled "Hollaback Girl" (see Figure 2).

Figure2:“k2b”Scratch program

The video game "Metal Slug: Hell Zone X," developed by Jorge
(see Figure 3). In the center is a snapshot of an in-game

character's avatar. On the

To the left is a screenshot of some of the code that determines
how one of the avatars behaves. An example of a brief series of

still frames used to animate a shooting scene is shown on the

right, which is a cropped screenshot of the outfits section.

To measure how deeply programming ideas were permeating the
Clubhouse culture over time, we gathered young people's Scratch

projects on a weekly basis for the first 18 months after their

introduction. For our studies, we relied on three distinct data sets:

(2) weekly participant field notes written by a team of
Undergraduate and Graduate field researchers who visited the

Computer Clubhouse and supported Scratch activities at the

fiftieth-grade level. The exported project summary files included

textual information such as the date, file name, author of the

project, and the number and types of commands used, as well as

the total number of stacks, sounds, and costumes used. Be aware

that the Undergraduate and Graduate support staff were not

computer scientists; rather, they were tasked with modeling the
best practices of learning. The volunteers were Scratch newbies

with little programming experience [5]. We saw this as a way for

the mentees to gain confidence and independence, since they were

able to take on the position of teacher on occasion.

Figure3:“MetalSlugHellZoneX”Scratchprogram.

8. PROGRAMMINGCONCEPTS
We were able to gather and analyze data from 536 projects, or
34% of the total number of projects completed at the Computer

Clubhouse throughout the time period of this research. Scratch

was used more often than Microsoft Word or any other program

designed for creating multimedia. Over eighty kids, roughly split

between boys and girls, utilized Scratch to make their own

programs, with many of them working on a single project for
months or even a year. These results show how Scratch has been

widely used in the local Computer Clubhouse. Moreover, it is

one of the few programming efforts that has effectively engaged

young men and women of color.

By analyzing the gathered projects for common Scratch
instructions, we were able to gain a sense of the programming

ideas that these young people had acquired. We saw certain

building elements as emblematic of the presence of a particular

idea in a specific undertaking. Figure 4 depicts the script for a

basic paddle game, in which the player uses the mouse to move a

paddle and try to catch a ball that drops from the top of the

screen. This script employs sequential control flow, a loop,

conditional statements, variables, and random numbers. User
input (the paddle) and control are also crucial to the game's

design.follows the x coordinate of the mouse pointer) and

needles (the paddle has its own script that runs in parallel with

the ball script).

Only 113 of the 536 projects have any scripts at all. These "pre-

scripting" examples show how Scratch may be used for
straightforward media

Loop

production and modification. When first starting out with Scratch,

many beginners spend time importing or sketching graphics and
recording noises before going on to coding. Each of the remaining

425 projects uses sequential execution (i.e. a stack with several

blocks) and the vast majority (374 projects, 88%) exhibits thread

use (i.e. multiple scripts running in parallel). These are

fundamental ideas in computer programming that any Scratch user

must learn before they can begin developing their first programs.

In addition to the above mentioned topics, we covered Boolean

Logic (and, or, and not), Variables, Random Numbers, User
Interaction (keyboard and mouse input), Loops, Conditional

Statements, Communication and Synchronization (broadcast and

when-receive), and more. These ideas are not as universally

applicable as sequential processing. Without a loop or conditional,

it is possible to create a basic application in which the user

navigates a sprite using the arrow keys.

Variable

Figure4:ScratchScriptforBallinaSimplePaddleGame
The purpose of this research was to examine how often these

topics were discussed by young people and to see whether there

was an overall growth in the community's understanding of

computer programming over time. The main ideas of

programming are summed up in Table 1. It's hardly surprising that

games and animations inspired so many projects to include user

interaction and looping. To my delight, I also found that the

Communication and Synchronization commands were used often;

although being one of Scratch's more advanced concepts, inter-

object communications is essential for constructing programs with

several interdependent parts. However, the ideas of Boolean logic,

variables, and random numbers are not simple to learn on one's

own. The variables were essential to one user's work. While

visiting the Clubhouse, he asked Mitchel Resnick for guidance,

and Mitchel patiently explained how to utilize variables to solve

his difficulties.

There was also a look at long-term tendencies. Overall, the

number of completed projects during the second school year was

twice that of the first school year over the same time period. (We

wrapped up this phase of data gathering in the middle of the

second academic year.) According to our research, when we

compared the

When we looked at the proportion of projects from each year that
included each programming idea, we saw that, on average,

students were using more advanced concepts by the end of the

second year (p .05). Variables, Boolean logic, and random

numbers were some of the less intuitive ideas mentioned. In order

to compare the proportions of projects from Year 1 and Year 2 that
included the intended programming techniques, Chi-Square tests

were conducted (see Figure 5). A majority of students' projects

used the four targeted programming principles (Loops, Boolean

Logic, Variables, and Random Numbers) after being exposed to

the lessons (p .001). Among the remaining ideas, Conditional

Statements showed minor improvement (p =.051), but the use of

the idea of communication and synchronization dropped

significantly.

Figure5.Graph

demonstratingthechangeinthepercentageofprojectsthatused

variousprogrammingconceptsovertime

**p <.001*p <.05

9. YOUTHIDEASOFPROGRAMMING
How did the young people in this research describe their own

lives? Thirty members of the Clubhouse were surveyed to get
their perspectives on programming and Scratch. When asked, "If

Scratch had to be anything not on the computer, what would it

be?" they were forced to come up with an answer. Most people

(n = 8) said they would compare Scratch to a piece of paper or a

sketchbook because you can "make whatever that you want with

it, exactly like paper." There were also responses from people

who compared Scratch to

in Flash, where he longed for a timeline to animate.

We asked kids a bunch of free-form questions to figure out

where Scratch fit into their toolkit at home, at school, and at the

Clubhouse. When asked whether their experiences in Scratch

reminded them of anything from school, all of the kids claimed

that it was similar to at least one topic, and most of them said

that it was similar to numerous. The arts were the most popular
choice overall (n = 20), followed by language arts (especially

reading) (n = 10), then mathematics (n = 8), science (n = 5),

history/social studies (n = 3), and finally computer science (n =

2). When asked how Scratch is related to other forms of art, the

kids listed visual arts (n = 11), performing arts (n = 6), musical

instruments (n = 4), and dancing (n = 3). From these comments,

we were able to deduce that students associated Scratch most
closely with classes that encouraged them to express themselves

creatively and personally, such as art and language classes.

In our survey, most kids and teens didn't even realize that Scratch

scripting was programming. In a survey of teenagers, the most

common response to the question, "What is computer

**

p =.51

*
** **

**

Random

Numbers

Conditional
Statement

programming to you? " was "Computer programming?" I have

absolutely no idea what it is! At first, we were worried that kids

wouldn't see the relationship between Scratch and computer

programming. Scratch's success may be partially attributed to the
fact that it is not seen as "programming," which allowed

youngsters to perceive it as fitting in with their identities as kids,

as something "cool," and as a fundamental element of the

Computer Clubhouse culture. After all, teaching young people to

code is not about turning them all become hackers or

programmers; rather, it is about providing them with the 21st-

century educational right to be exposed to the whole spectrum of

technological fluencies. This is especially crucial considering that
more over 90% of Clubhouse youngsters have never taken a single

computer lesson throughout their time in elementary, middle, or

high school. As a result, the Clubhouse becomes a pivotal location

for easy access to software development resources.

10. DISCUSSION
Our research indicates that young people living in urban areas

who attend a Computer Clubhouse are committed to learning

computer programming. Children in the Clubhouse learned and

applied ideas of user interaction, loops, conditionals,
communication, and synchronization via their own initiative and

exploration. Variables, Boolean logic, and random numbers,

which are harder to grasp, saw gradual increases in use

throughout time. Given the absence of any formal training or the

mentors' lack of expertise in the field, these results come as a bit

of a shock.

Absolute value and square root were never used in any of the

projects. This makes sense, given that the sorts of projects for
which such calculations are necessary are quite uncommon.

Other notions, though, like as variables and random numbers, are

very helpful, but they were slower to catch on. We assume these

are not notions that can be figured out on one's own. The idea

may have been lifted wholesale from one of the preloaded

Scratch examples. Variables, however, are a notion that is

present in both example projects and the real world.

that the community would not start using the concept unless a

mentor came at the right moment and provided the necessary

guidance.

Clubhouse kids could have used any number of other

programming languages, so it's natural to wonder what drew

them to Scratch. By "simplifying the mechanics of
programming," "offering assistance for learners," and "giving

students with desire to learn to program," Kelleher and Pausch

[7] may have given the greatest response to this question (p.

131). We believe Scratch caters to these three needs. Scratch's

block architecture, for one, simplifies the mechanics of

programming by removing the need to worry about syntax

problems, offering guidance on where to insert command blocks,

and presenting instantaneous results from experimentation.
We also believe that the Computer Clubhouse's social

infrastructure plays a significant role in helping newcomers to

the programming world. All of the mentors were liberal arts

majors with no programming expertise, but they were eager to

give the young people advice and support them in their efforts.

In many cases, we saw young people asking their mentors to

work on their projects with them or at least provide feedback.

Clubhouse kids would sometimes show their mentors the ropes
of Scratch by sharing what they had learnt. Despite the common

perception that mentors know more than their mentees, we found

the reverse to be true in this case, with both parties benefiting

from the learning experience [5]. This need for feedback and

support may also account for the rapid growth of the Scratch

website (scratch.mit.edu), which lets programmers post their

work and collaborate with others.

Finally, we believe that the multimedia capabilities of Scratch

contributed to the increased interest in programming among urban

kids. The project archive showed that Clubhouse regulars were

well-versed in a number of different types of media and eager to
both consume and experiment with those forms. Numerous

examples of Scratch projects use well-known characters whose

photos were taken directly from the internet. Scratch projects

centered on generic characters were more likely to be abandoned

than those centered on popular characters, according to our

analysis of data from other sources [10]. Digital media is often the

entry point for young people who are curious about technology

and might thus provide a more viable route for them to pursue
careers in programming. The variety of media designs, from video

games to music videos and greeting cards, shows that young

people are interested in more than only consuming digital media

(which they do on a daily and personal basis), but also in

producing it, a role that is sometimes denied to urban youth.
.

11.REFERENCES
[1] Based on the work of [1] Adams, J. C. (2007). Alice,

middle schoolers, and the fantasy literature debate. The

38th Annual Proceedings of the International

Conference on Software Engineering

[2] Workshop on Computer Science Instructional

Technology (pp. 307-311). To be published by ACM

Press in New York.

[3] Begel, A. [2] (1996). An Introduction to LogoBlocks, a

Visual Language for Creating Interactive Applications.

The MIT Media Lab advanced student project report

was never released to the public.

[4] According to [3] Goode, J., R. Estrella, and J. Margolis

(2006). The gender gap in introductory computer

science courses at the high school level. In J.

[5] Women in Information Technology: Perspectives on

Underrepresentation, edited by M. Cohoon and W.

Aspray (pp. 89-114). MIT Press, Cambridge, MA.

[6]

[7] In [4] Guzdial, M. (2004). The first steps in

programming environments. Research on Computer

Science Education, Edited by S. Fincher and M. Petre

(pp. 127-154). Taylor & Francis, Libros, Lisse,

Nederlands.

[8]

[9] Y. B. Kafai; S. Desai; K. Peppler; G. Chiu; J. Moya;

and J. (in press). Fostering Equitable Service-Learning

via Mentoring Partnerships in a Community

Technology Center. Helping others learn by example

and receiving individual instruction.

[10]

[11] Based on the work of Kafai, Peppler, and Chiu ([6]),

(2007). Community Technology Centers and Their Role

in Bringing High-Tech Programmers to Low-Wealth

Neighborhoods. Proceedings of Communities and

Technologies 2007, edited by C. Steinfield, B. Pentland,

M. Ackerman, and N. Contractor (pp. 545-564).

Springer, New York.

[12]

[13] According to [7] Kelleher and Pausch (2005). Reducing

the learning curve for new programmers: a classification

of introductory programming environments and

languages. Publication information: ACM Computing

Surveys, 37(2), 88-137.

[14]

[15] Papert, S. [8] (1980). 'Mindstorms,' by Nicholas Carr,

Basic Books, New York.

[16]

[17] K. Peppler and Y. B. Kafai (9) (2007). Digital media

creation in informal education: a look at tools from

SuperGoo to Scratch. 32(2), pages 149-166 in Learning,

Media, and Technology.

[18]

[19] As cited in [10] Peppler, K., and Kafai, Y. B. (under

review). Media arts production as an intersection of

technical, artistic, and critical processes; the creative

bytes. The Learning Sciences Journal.

[20]

[21] Resnick, Michael; Kafai, Yasu; and Maeda, Jun. (2003).

ITR is an after-school program that uses a media-rich,

networked programming environment to increase

students' comfort with technology. Submittal to the

National Science Foundation, Washington, DC (which

was funded).

[22]

[23] A. Steinmetz, J. (2001). Learning Environments in

Computers and Squeak. Squeak: Open Personal

Computing and Multimedia, edited by K. Rose and M.

Guzdial, pages 453482. Located in New York, Prentice

Hall.

[24]

[25] Source: [13] Resnick, M., N. Rusk, and S. Cooke

(1998). Urban youth get computer literacy at a

clubhouse. Published in High technology and low-

income communities, edited by D. Schon, B. Sanyal,

and W. Mitchell. To be published by the MIT Press in

Cambridge, Massachusetts.

[26] In [14] Sosniak, L. (2001). The Nine Percent Problem:

Public and Private Education. 103 of the Teachers

College Record.

[27] As cited in [15] Werner LL, Campe S, and Denner J.

(2005). Girls in middle school + games programming =

IT savvy. Sixth International Conference on Education

Through ICT (SIGITE '05) Proceedings (pp. 301-305).

To be published by ACM Press in New York

[28] .

