

 ISSN2321-2152www.ijmece .com
 Vol 6, Issue 3Aug 2018

In-Depth Analysis of Agent-Oriented Software Development

Dr. Prabhu, Imtiyaz Khan,MohdIrshad,

Abstract
One of the most recent additions to Software Engineering is agent-oriented software development.

Allowing agents to stand in for high-level abstractions of active things in a software system is one of its

many advantages over traditional methods of development. This article provides a review of current

literature on industry-strength software engineering, focusing on both generic high-level approaches and

on more particular design methodologies.

Keywords:Software Architecture, Components, Design Patterns, UML, and Intelligent Agents

1 Introduction

There is talk of a new paradigm [22] in the study

of Software Engineering called Agent-Oriented

Software Engineering. However, strong and user-

friendly processes and tools must be created

before it can become a new paradigm in the

software business. First, however, we need define

what what an agent is. In computing, an agent

(also known as a software agent or intelligent

agent) is a piece of autonomous software; the

terms "intelligent" and "agent" characterize some

of the program's defining characteristics. The

word "intelligent" is used because the software is

capable of "intelligent behavior," which is "the

choosing of actions based on knowledge," and

"agent" is used because it explains the program's

function. An agent is "one who is allowed to act

for or in the place of another," as defined by

Merriam-Webster.(1) Virtual characters in video

games and simulations (e.g. Quake) Market

intermediaries and negotiators (e.g. the auction

agent at EBay) 3) Search engine spiders

(collecting data to build indexes to used by a

search engine, i.e. Google) The weak and strong

idea of agency [32] is a typical framework for

categorizing agents. Agents under the weak idea

of agency have free choice (autonomy), the ability

to communicate with one another (social ability),

the capacity to react to environmental cues

(reactivity), and the power to take the initiative

(initiative) (pro-activity). The strong idea of

agency has all the features of the weak notion of

agency, plus the following: agents are mobile;

they tell the truth; they do what they're ordered to

do; they're goodhearted; and they act in an

optimum way to attain their objectives

(rationality).

 Department of cse

drprabhu42@gmail.com, imtiyaz.khan.7@gmail.com, mohdirshadislclg@gmail.com,

ISL Engineering College.
International Airport Road, Bandlaguda, Chandrayangutta Hyderabad - 500005 Telangana, India.

mailto:drprabhu42@gmail.com
mailto:imtiyaz.khan.7@gmail.com
mailto:mohdirshadislclg@gmail.com

Existing agents will be referred to as software

agents or agents since they have more

characteristics with software than with

intelligence.

1.1 Terminology

Since agent-based software engineering is a

developing topic of study, I will attempt to define

and explain the terminology and connections

utilized in academic articles in this area.

When compared to Object-Oriented

Programming (OOP), Agent-Oriented

Programming (AOP)[29, 30] is generally seen as

a step above (OOP). The addition of

"Programming" indicates that both ideas are

practically at the level of a programming

language and its implementation. Shoham first

used the phrase "Agent-Oriented Programming"

in 1993 [28].

As stated in [8,] Agent-Oriented Development

(AOD) is an expansion of Object-Oriented

Development (OOD). Even though

"Development" might simply mean

"Programming," it is more often understood to

include the whole development process, from

requirements definition and design through the

actual coding.

Although all of the following phrases—Software

Engineering with Agents [33], Agent-Based

Software Engineering [12], Multi-agent Systems

Engineering (MaSE) [3, 31], and Agent-Oriented

Software Engineering (AOSE) [22, 20, 35, 15]—

have the same meaning, the most common use

appears to be AOSE. As opposed to AOD, which

focuses only on creating an agent-based system,

AOSE considers how the system will be used and

maintained. However, as was previously said, the

term AOD should be avoided for the sake of

clarity and to avoid any potential confusion (due

to the different interpretations).

All problems with agent-oriented software

engineering, as well as those with how and what

agents compute, may be summed up under the

umbrella term Agent-Based Computing [16].

1.1 Scopeandlimitations

In this article, we will provide a high-

level summary of the most up-to-date

approaches for creating agent-based

systems. An equal amount of attention is

paid to broad, overarching approaches

and narrower, more focused design

processes in the context of software

engineering. Specialized agent

techniques, such as those developed to

enhance agent coordination, cooperation,

communication, and artificial

intelligence, are thus outside the purview

of this work. Jennings et al. [11] and

Nwana et al. [27] are cited as helpful

background readings that provide broader

outlines of the agent research area. Here

is how the content of this document is

broken down: Aspects of Agent-Oriented

Software Engineering are described in

Section 2, followed by a description of

high-level methodologies in Section 3,

followed by a description of design meth-

ods influenced by commonly used

software engineering methods and

standards (such as the Unified Modeling

Language, components, and design

patterns) in Section 5, which discusses

problems, methodologies, and tools for

agents in an industrial context.
Agent-

OrientedSoftwareEn-

gineering
The primary goals of Agent-Oriented Software

Engineering are to develop methods and tools

that make it possible to build and maintain agent-

based software at a low cost. Moreover, the

program must be adaptable, user-friendly,

scalable [5] and of good quality. In other words,

these problems are quite analogous to those

studied in other subfields of software

engineering, such as object-oriented program

development.

Is there a way to tell living things apart from

inanimate ones?

Object-oriented programming (OOP) may be

considered as the successor of structured

programming [29, 30], while agent-oriented

programming (AOP) is an extension of OOP. In

object-oriented programming, objects serve as the

primary unit of analysis. An object is a collection

of related data structures and the procedures that

operate on them (functions). In the real world,

objects are often used as abstractions for passive

things (like a home), whereas agents are often

seen as a potential successor to objects since they

may enhance abstractions of active entities.

Comparable to objects, agents include mental

components like beliefs and commitments that

may be represented by structures. Also, unlike the

ad hoc communications often employed by

objects [22], agents enable high-level interaction

(using agent-communication languages) between

agents based on the "speech act" paradigm, with

examples like FIPA ACL and KQML [21].

Another key distinction between agent-oriented

programming (AOP) and object-oriented

programming (OOP) is that objects are managed

from the outside in (whitebox control), but agents

exhibit independent behavior that is not

immediately manageable by the outside world

(blackbox control). That is to say, salespeople

may refuse to work with you. [9]

Agents: the answer to all of software's ills?

There is a risk that academics may have

unrealistic expectations for the capabilities of

agent-oriented software engineering due to the

field's youth and fast expansion.

There are risks associated with agent-oriented

software engineering, and Wooldridge and

Jennings [7, 33] describe some of them. Political,

conceptual, analysis and design, agent-level, and

societal problems have been identified.

Overselling or seeking to apply the notion of

agents as the universal answer may lead to

political difficulties. Imaginary obstacles might

happen when programmers overlook the reality

that agents are software—specifically,

multithreaded software. Potential problems with

the analysis and design may arise if the developer

fails to take into account relevant technologies,

such as other software engineering approaches.

Too much or too little artificial intelligence in the

agent-system might lead to problems at the agent

level. Finally, if the developer has a too-idealistic

view of agents or uses too few agents in the

agent-system, it might have societal

consequences.

The issue with all the hoopla

Jennings, a leading researcher in the agent area,

notes that the field might easily go the way of the

nearly related subject of Artificial Intelligence in

the 1980s, which failed to deliver on its promises

and became an item of media hype before being

"slaughed to death" [16].

2 High-levelMethodologies
Methodologies that use an iterative, top-down

approach to designing and building agent-based

systems are discussed.

3.1.1 The Gaia Approach

The Gaia technique for agent-oriented analysis

and design is presented by Wooldridge, Jennings,

and Kinny [10, 8]. Though Gaia is a general

methodology that can be applied to both the

micro- and macro-levels (agent structure and

agent society and organization structure) of agent

development, it is not a "silver bullet" solution

because it assumes run-time stability in both

inter-agent relationships (organization) and agent

abilities. Gaia was developed out of a recognition

that current approaches fall short of accurately

portraying agents' inherent autonomy and

problem-solving abilities, as well as adequately

modeling agents' idiosyncratic methods of

carrying out interactions and constructing

hierarchies. With Gaia, developers may

methodically create a design that is ready for

deployment in light of system requirements.

In Gaia analysis, identifying roles is the first

stage, followed by modeling the relationships

between those roles. The four components of a

role are responsibilities, permissions, tasks, and

procedures. There are two sorts of

responsibilities: those that contribute positively to

the system (liveness qualities) and those that

safeguard it (safety properties). The role's

permissions define its capabilities and the data it

has access to.

One can get into it without any problems. An

activity is any job carried out by a role

independently of any other roles. Distinct roles,

such as a seller, may allow for different auction

procedures, such as the "English auction," and

they are referred to as "protocols." When it comes

to defining roles and the characteristics that go

along with them, Gaia provides formal operators

and templates, while interaction representations

may be modeled using the platform's schemas.

Gaia's design process begins with a step to

translate roles into agent categories, followed by

steps to generate enough instances of those sorts

of agents. The next phase is to figure out what

kind of services model is required to perform a

certain function in one or more agents, and the

last step is to build the acquaintance model to

represent the agents' interactions with one

another.

Gaia's limitations mean it has limited use for

Internet-based applications, but it has shown to

be an effective method for building closed-

domain agent-systems. Zambonelli, Jennings, et

al. [35] offer various adaptations and

enhancements to the Gaia technique in order to

facilitate the creation of Internet-based

applications, which are beyond the scope of the

original method's domain limits.

The works of Chaib-draa and others also explore

both the micro and macro levels of agent

modeling. [2]

Methodology for Multiagent Systems

Engineering 3.2

Multiagent System Engineering Approach is

recommended by Wood and DeLoach [3, 31].

(MaSE). When compared to Gaia, MaSE is broad

and can run on a wide variety of platforms, but

MaSE's automated code development features

take it a step further. Since there aren't any tried-

and-true methodologies or robust toolkits

available for developing agent-based systems,

MaSE was developed to fill this gap. MaSE's

purpose is to guide the designer through the

process of creating an agent system, beginning

with a system definition. MaSE shares some of

Gaia's domain constraints, but it also insists on

one-to-one rather than multicast agent

interactions.

The steps of the MaSE technique may be thought

of as a logical pipeline with seven distinct stages.

First, the objectives of the system are captured,

which involves translating the original system

design into a goal hierarchy. Goals are

determined by analyzing the needs stated in the

original system specification, and then ranked by

importance.

importance in a well-organized, hierarchically-

ordered hierarchy based on subject. The second

step, called "Applying Use Cases," involves

developing the system's use cases and sequence

diagrams from the initial specification. As such,

use cases depict the logical flow of information

between the different roles in a system and the

system itself. It is possible to determine the

minimal amount of messages required to be

exchanged across roles in a system by drawing a

sequence diagram. Refining such positions to

make them more specific to the first-phase aims

is the focus of the third stage. Typically, one role

is used to represent a single objective, however

sometimes many objectives might be collapsed

into a single role. To go along with each position,

a list of tasks is formulated, which details the

steps to take in order to achieve the role's

objectives. State diagrams serve as the primary

means of defining tasks. In the last stage,

"developing agent classes," a graphic is made to

show how various responsibilities are assigned to

various agent classes. This diagram is similar to

object class diagrams, but instead of focusing on

the inheritance of structure, it emphasizes the

semantics of dialogue at a higher level. Phase

five, "constructing dialogues," involves defining

a coordination protocol for interacting agents via

the use of state diagrams. Internal agent class

functionality is developed in step six, assembly.

Belief-Desire-Intention (BDI), reactive, planning,

knowledge based, and user-defined agent

architectures provide the basis for the selected

functionality. When the system design step is

complete, real agent instances are created using

the agent classes, and the whole thing is laid out

in a deployment diagram.

There is hope that in the future MaSE will be able

to provide fully automated code creation

according to the deployment design.
3.1 Modeling database information

sys-tems
When planning IT infrastructure, Wagner [29, 30]

recommends using an AOR modeling method.

Specifically, AOR is influenced by the Entity-

Relationship (ER) meta-model and the Relational

Database (RDB) model, two of the most popular

database modeling approaches.

The ER meta-model is meant to facilitate the

mapping of data-entity relationships to a

database-ready information system architecture.

This transformation is well-supported for inert

entities like objects but falls short when trying to

model dynamic actors like agents within an

information system, which is why the AOR-

model was developed: to supplement the ER-

model and allow for the modeling of relations

between agents as well as static entities.

In AOR, there are six distinct kinds of entities:

agents

,

everything that happens, everything that people

do, everything that people claim, and everything

that people own. Each party's promises are

interpreted as a counterclaim by the opposing

party. Groups of people working together are

represented as "sub-agents" in the model. Sub-

agents may independently take some acts, but

they must also undertake obligations for the

agent-organization, such as keeping an eye on

claims and other relevant events. The services

and permissions outlined in the Gaia

methodology [10] seem to align with the

understanding of responsibilities and rights.

Magnanelli et al. [23] provide an example of a

DBIS built on an agent-based model.

3 DesignMethods
4.2 Methodologies described here draw

heavily on the practices and guidelines

established in the area of object-oriented

software development.

4.3 To ensure uniformity in the creation of

object classes, the Universal Modeling

Language (UML) was created as a

graphical representation language.

Support for constructing sequences,

components, etc., in fact all sections of an

object-oriented information system

architecture, was added subsequently and

has substantially expanded its

functionality.

It has been proposed by Yim et al. [34]

that multi-agent systems may benefit

from an approach to design that centers

on the systems' architecture. The

technique, which is grounded on common

UML extensions based on the Object

Constraints Language (OCL), allows for

the conversion of agent-oriented

modeling issues into object-oriented

modeling problems. Instead of the more

often used connection types between

object classes, such inheritance, the

converted relations between agents are

employed as relations between object

classes in the design process. This

approach allows designers and developers

to use current UML-based tools and

expertise in designing object-oriented

systems.

For Agent-Interaction Protocols, Odell,

Parunak, and Bauer [14] proposed a

three-layer structure (AIP). To begin, AIP

are defined as patterns that both describe

the message exchange between agents

and the related limitations on the content

of these messages. Unlike the UML-

based design [34] proposed by Yim et al.,

Odell et almethod .'s requires

modifications to both the UML visual

language and the articulated semantics.

Modifications to the following UML

representations are needed for the

representation to work properly:

packages, templates, sequence diagrams,

collaboration diagrams, activity

diagrams, and statecharts are all types of

tations. UML packages and tem- plates

are used to provide a reusable

representation of the communication

protocol (i.e., the kind of interaction) at

the first layer. The second layer makes

use of sequence, collaboration, activity,

and statechart diagrams to depict the

interactions between agents (i.e., which

types of agents may communicate with

one another). Activity diagrams and

statecharts are used to depict the third

layer of agent processing, which explains

the agent's motivations and decision-

making for each action it does.

To be able to express all characteristics of

agents, Odell et al. [13] propose an

extension to UML they term Agent UML

(AUML). There is a proposal to include

AUML into UML 2.0 [17] that has been

presented to the UML standards group.

Adding greater role definition to UML, as

proposed, would need revising the UML

sequence diagram structure. The

description of the UML package must be

altered so that agents, rather than

operations, may be represented as

interface points. Agents are mobile in the

sense that they may freely travel between

various agent systems. This requires a

modification to the specification of the

deployment diagram in UML.

At the agent level, the highest abstraction

level in Agent-Oriented Software

Engineering, Bergenti and Poggi [15]

propose using four agent-oriented UML

diagrams. Since no modifications to the

UML standard are needed, it is analogous

to Yim's method. The first is the UML

static class diagram-based ontology

diagram, which models the universe in

terms of interactions between things. The

second is the UML deployment

architecture diagram, which is used to

depict the setup of a multi-agent system.

The third diagram is a protocol diagram,

which follows the same conventions as

the UML collaboration diagram to depict

the interaction language. For reference,

below is the first layer of the

communication protocol as shown by

Odell et al. [14]. Fourth, each agent's

capabilities may be represented by a role

diagram, which is derived from the UML

class diagram.

In order to define and depict social systems in

UML, Parunak and Odell [9] integrate exisiting

organizational models for agents in a UML-

based framework. This work enhances the UML

add-ons known as Agent UML.

4.4 DesignPatterns

Design patterns are recurring structures or idioms

in software or computer code.

When it comes to design patterns for mobile

agents, Aridor and Lange [1] propose a

taxonomy. They also provide examples of

patterns that may be considered members of each

category. The goal is to lessen the time and

money needed to create mobile agent systems

while improving their reusability and code

quality. The three groups in this system are:

location, activity, and communication. The

forwarding pattern, for example, explains how

newly arriving agents might be passed to another

host and belongs to the traveling class of patterns

since it applies to agents that move between

different settings. The patterns in the task class

outline the many ways in which agents might

carry out their work; for instance, the plan pattern

outlines the steps necessary to complete

numerous tasks simultaneously on different hosts.

It is the job of interaction class patterns to detail

the means through which autonomous entities

might coordinate their efforts. The facilitator is an

interaction class pattern that specifies a kind of

agent that can help other agents discover and be

found according to their skillsets.

Rana and Biancheri [26] use Petri Nets to

simulate the mobile agent meeting pattern,

another approach to mobile agent design patterns.

A seven-layer architectural pattern for agents is

proposed by Kendall et al. [6] ([19, 18]), along

with sets of patterns that fall under each tier.

Mobility, translation, cooperation, action,

reasoning, belief, and sensation are the seven

tiers. The agent's mental model is picked using

patterns in the lowest three layers; for example, if

the agent's job is to respond to stimuli, the

reactive agent pattern should be chosen, while if

the agent's job is to interact with humans, the

interface agent pattern should be chosen. The

benefits of using patterns in conventional

software development are cited to support the

decision to use this approach to agent creation.

The layered architecture has a comparable

rational categorization of patterns to the one

described in the work of Aridor and Lange. The

classes of travel (represented by the Mobility and

Translation layers), cooperation (represented by

the Interaction layer), and activities (represented

by the Actions layer) are all represented by the

respective layers of this diagram. This method for

mobile agents differs from others in that it

attempts to include all of the most common

varieties of agent design patterns.

4.18 Components

Components are conceptual clusters of linked

things that work together to provide a certain set

of features. This may seem very similar to agents,

however unlike agents, components do not make

decisions on their own. Components have proven

to be a popular and successful software

development strategy because they provide a

higher level of re-use than does the construction

of single classes from scratch.

A three-tier architecture is proposed by Erol,

Lang, and Levy [5] to facilitate the construction

of agents by the use of reusable components. The

foundation of interactions is laid by the roles and

words of the agents involved. The second level

consists of the agent's local knowledge and

expertise, which is used to save the agent's

execution state, plan, and restrictions. The third

layer, information content, is passive and often

domain-specific due to its frequent usage in

encasing outdated systems such as mainframe

database applications.
.Agentsinthereal-world

Agent-oriented programming is gaining traction

in the business world, but it has yet to catch on to

the same extent as object-oriented programming.

This section discusses the successful applications

of agents in the manufacturing sector, including

where and how they have been used.

In a business setting, Parunak [25] provides a

definition of agenthood along with a taxonomy

and maturity assessment. His goal is to spread

knowledge about agent-oriented software

engineering and increase its practical use in

business.

It is argued that agent-oriented programming, or

"agenthood," is nothing more than an incremental

enhancement of the tried-and-true approach of

object-oriented programming.

Agent systems are placed into one of three

categories based on their environment, with

digital (including software and digital hardware),

social (including human users), and

electromechanical settings all being represented

(non-digital hardware, e.g. a motor). The agents

are then categorized in the taxonomy based on the

kind of interface they provide. There is a

correlation between interface varieties and

ecosystems:

There include digital (such as communication

protocols), social (such as user interfaces), and

electromechanical (e.g. motor control interfaces).

A maturity meter of agent-based systems is

established to be able to quantify the degree of

agent technology and systems since few business

users, in contrast to academics, are early-adapters

of new and immature technology. There are six

stages of maturation in the met- ric, from

prototypes to finalized goods. The least

developed category is modeled applications,

which are essentially architectural descriptions or

assessments based on theory. Because they are

lab simulations, mimicked apps continue to be a

rather immature part of the metric. When it

comes to software development, prototypes are

the next maturity level up; they function in a non-

commercial setting yet use actual hardware.

While it is reasonable to assume some level of

stability from pi-lot applications, they are not

considered production-ready until they have been

in use for a given amount of time. Many

companies are using the program in production,

but they need help with setup and upkeep. The

most developed applications have reached the

point where they can be marketed as goods,

packaged in a box, and delivered to a customer's

desk; in most cases, a layperson can set them up

and keep them running without any special

knowledge or training.

What are the where and how of agents in the

business world?

The uses of agents in industry are discussed by

Parunak [24]. We take into account the industrial

application domains of scheduling, control,

cooperation, and agent simulation. Followed by

this is a presentation and discussion of various

tools, methodologies, insights, and difficulties

related to the creation of agent systems.

Scheduling in manufacturing is establishing a

sequence for and setting times for various steps in

the manufacturing process. The goal is to

decrease resource needs per unit and the risk of

failures while increasing the number of units

produced each time slot without sacrificing

product quality. Controlling processes and

equipment is essential for ensuring they run on

time. Machine power regulation is one kind of

control, but more complex cybernetic control of

processes in real time is also possible. As an

example, throughout the design process,

engineers and designers must work together to

ensure that goods are both aesthetically pleasing

and safe for consumers to use. Since there is a

high initial investment for a factory to begin

producing electronics, for example, this sector of

industry is not attractive to many companies.

The production process must be simulated in a

cost-effective manner.

Techniques used by agents in the marketplace

Rockwell's Foundation Technology and

DaimlerChrysler's Agent Design for agent- based

control [24] are two of the offered methodologies

for developing industrial agent systems.

When designing agent-based control

architectures, Rockwell's Foundation Technology

takes into account four factors: fault-tolerance in

a multi-objective setting; self-configuration to

support new products and rapidly changing old

ones; productivity; how to at least maintain and

hopefully improve productivity by applying

agents; and equating.

Daimler-Agent Chrysler's Design method is

likewise structured in four stages, like

Rockwell's. It begins with the analysis and

creation of a model of the manufacturing job,

continues with the identification and

classification of the roles required, moves on to

the specification of interactions between roles,

and concludes with the specification of agents

that will carry out these roles. Regarding role

identification and interplay between roles, this

technique is quite similar to the Gaia [10] and

MaSE [31] approaches.

4 Conclusion

To that end, this work has aimed to provide a

synopsis of the state of the art in agent-oriented

software engineering in the last several years.

Additional research needs to focus on both a

more in-depth examination of the field and more

rigorous testing and experimentation with the

methods.
References

[1] [1] Agent Design Patterns: Elements of Agent

Application Design, by Y. Aridor and D. B.

Lange. 1998 saw the publication of the

proceedings for the second international
conference on autonomous agents.

[2] Micro and macro scale relationships in agent

modeling [2.] Chaib-draa B. Pages 262-267,

1997, in Proceedings of the First International
Conference on Autonomous Agents.

[3] Multiagent Systems Engineering. [3] DeLoach,

S. A. Methodology and language for

developing agent-based software. Agent-
Oriented Information Systems Proceedings,

1999, pages 45–57.

[4] Formalizing Agent-Based System Development

with Graph Processes. [4] Depke, R., and
Heckel, R. Graph Transformation and Visual

Modelling Techniques Workshop

(GTVMT'00), in Proceedings of the

ICALP'2000 Satellite Workshops, 2000, pp
419-426.

[5] Based on the work of Erol et al. Agent

Construction Using Shared Parts. 2000: Pages

76–77 in Proceedings of the Fourth
International Conference on Autonomous

Agents.

[6] According to [6]E. A. Kendall, P. V. M.

Krishna, C. V. Pathak, and C. B. Suresh.
Agencies that are smart and mobile and follow

patterns. 1998 saw the publication of "Proc. of

the Second International Conference on

Autonomous Agents," which ran on pages 92–
99.

[7] Challenges in agent-oriented software

development [7], by M. J. Wooldridge and N.

R. Jennings. As published in the proceedings of
the 1998 international conference on

autonomous agents, pp 385–391.

[8] In [8] Wooldridge M. J., Jenning N. R., and

Kinny D. An approach to agent-based research
and development. Published in 1999 as pages

69–76 in Proceedings of the Third International

Conference on Autonomous Agents.
[9] According to [9] H. V. D. Parunak and J. A

UML Model of Social Structures. Published in

Proceedings of the 2001 International

Conference on Autonomous Agents.
[10] According to [10]M. J. Wooldridge, N. R.

Jennings, and D. Agent-oriented analysis and

design using the Gaia technique. September

2000 issue of Autonomous Agents and Multi-
Agent Systems, volume 3, issue 3, pages 285–

312.

[11] According to [11] N. R. Jennings, K. Sycara,
and M. J. Wooldridge. The Future of Agent

Research and Development: A Roadmap. First

published in 1998, Autonomous Agents and

Multiagent Systems, 1(1), pp. 7-38.
[12] When it comes to creating software, [12]

Jennings, N. R., "On agent-based software

engineer- ing," is where you should look.

Information Technology with Artificial
Intelligence, Year 2000.

[13] According to [13] J. Odell, H. V. D. Parunak,

and B. Bauer. The Expansion of UML for

Agents. Proceedings of the Agent-Oriented
Information Systems Workshop (AOIS) at the

17th AAAI conference on artificial intelligence

(AAAI), 2000.

[14] Represent- ing Agent Interaction Protocols in
UML. By Jonathan Odell, Hamid V. D.

Parunak, and Brian Bauer. It was held in 2000

during the First International Workshop on

Agent-Oriented Software Engineering (AOSE-
2000).

[15] Exploiting UML in Multi-Agent System

Design. By F. Bergenti and A. Poggi.

Workshop on Engineering Societies in the

World of Agents (ESAW'00), Proceedings of

the ECOOP, 2000, pp. 96–103.

[16] The potential and dangers of agent-based

computing [16]. Jennings, N. R. Published in
Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence (IJCAI-

99), pp 1429-1436.

[17] Suggested UML Extensions for Agents, by
John Odell and Christopher Bock, December

1999 [17].

[18] To cite: [18] E. A. Kendall, M. Malkoun, and

C. Jiang. Using OOP to create multi-agent
systems. In the June 1997 issue of the Journal

of Object-Oriented Programming.

[19] With reference to [19] Kendall, E. A., M.

Malkoun, and C. Jiang. Agent-based systems as
a domain for the application of object-oriented

analysis. Article published in the February

1997 issue of the Journal of Object-Oriented

Programming.
[20] For more on why an agent-based approach is

necessary for developing complex software

systems, see [20] Jennings, N. R. forthcoming

in Communications of the ACM, 2001.
[21] This is according to [21] Y. Labrou, T. Finin,

and Y. Peng, Agent Communication

Languages: The Current Landscape.

March/April 1999 issue of IEEE Intelligent
Systems, volume 14 number 2.

[22] Problems with Agent-Oriented Software

Engineering. [22] Lind, J. An Agent-Oriented
Approach to Software Engineering:

Proceedings of the First International

Workshop, AOSE-2000.

[23] Databases for Agents and Agents for
Databases. [23]. Magnanelli, M., and Norrie,

M. C. June 2000 saw the publication of the

proceedings from the second annual

international bi-conference workshop on agent-

oriented information systems.
[24] A Review of Industrial Agent Applications

from the Perspective of a Practitioner. [24] H.

V. D. Parunak. In December of 2000, the

journal Autonomous Agents and Multi-Agent
Systems published issue 3(4), pages 389–407.

[25] Experiences and Issues in the Design and

Implementation of Industrial Agent-Based

Systems [25]. Parunak, H. V. D. Agents in
Overalls. As published in the International

Journal of Cooperative Information Systems,

Volume 9, Issue 3, pages 209–227, 2000.

[26] Meeting Design Pattern for Mobile-Stationary
Agent Interaction: A Petri Net Model, by O. F.

Rana and C. Biancheri. This work was

published in the proceedings of the 1999

Hawaii International Conference on System
Sciences.

[27] Those two authors are [27] Nwana H. S. and D.

Ndumu. A new angle on the study of software

agents. Reference: 14(2), 1999, The Knowledge
Engineering Review, pp. 1-18.

[28] Agent-oriented programming. [28] Shoham Y.

The Journal of Artificial Intelligence, Volume

60, Issue 1, Pages 51–92, 1993.

[29] The following is a snippet from: [29] Wagner,

G. Agent-Object-Relation Modeling. As

presented at the Second International

Symposium: "From Agent Theory to Agent
Implementation," held in conjunction with

EMCRS 2000 in April 2000.

[30] Organizational Information Systems: An

Agent-Oriented Approach to Analysis and
Design. [30] Wagner, G. May 2000 in Vilnius,

Lithuania, during the Fourth IEEE International

Baltic Workshop on Databases and Information

Systems.
[31] An Overview of the Multiagent Systems

Engineering Methodology. [31] Wood, M. F.,

and S. A. DeLoach. It was held in 2000 during

the First International Workshop on Agent-
Oriented Software Engineering (AOSE-2000).

[32] To learn more about intelligent agents and how

they work, check out [32]. It was published in

1995 in the journal Knowledge Engineering
Research and Development, volume 2 issue 10

page numbers 115-152.

[33] The Perils of Agent-Based Software

Development, by Michael J. Wooldridge and
Neil R. Jennings [33]. May/June 1999 issue of

IEEE Internet Computing, pp.20-27.

[34] Source: Architecture-Centric Object-Oriented

Design Method for Multi-Agent Systems, by H.
Yim, K. Cho, K. Jongwoo, and S. Park. Multi-

Agent Systems: Fourth International

Conference, Proceedings, ICMAS-2000, 2000.
[35] By F. Zambonelli, N. R. Jennings, A. Omicini,

and M. J. Wooldridge. Chapter 13:

Coordination of Internet Agents, Models,

Technologies, and Applications. It was
published by Springer in the year 2000.

Software engineering with an emphasis on

agents for use in web-based programs

[36] .

