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Abstract: 
The impact of wear levelling on a Flash storage pack- age and its access operations’ execution modes is in- vestigated. First, a 
simple, static logical to phys- ical mapping functions are proposed and their im- plied wear levelling is assessed for different 
address distributions, covering both unifrom access and hot spots, as well as the Flash chip utilisation within the whole package. 
Second, for the access execu- tion modes, different preemptive and non-preemptive priority schemes are considered with a range 
of IO arrival rates using Poisson, Erlang, Pareto and Geometric-based arrival processes. The analysis of the impact of the 
execution modes on the perfor- mance of the Flash memory is undertaken using a hardware simulator. The results obtained show 
clearly the good wear levelling obtained by the map- ping functions, even in presence of hot spots. In ad- dition, the effect of the 
chosen execution mode on the whole storage package for each IO workload type is clearly analysed and accurately quantified. 
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Introduction 
StoragedevicesbasedonFlashmemoryarebe-comingmoreand 
moreprevalentinour 
dailylife.Thisrecenttechnologypresentsapanoplyofde-vices, 
continually undergoing intensive evolution inresponse to 
market demand for MP3 players, 
mobilephones,digitalcamerasusingrawFlashdevicesandforli
ghtweightlaptopcomputers,recently 
evendesktopcomputersusingFlash-
baseddevicesinothertermsSolidStateDrives(SSD).Infact,their 
use is covering both consumer and enterprisestorage 
products replacing Hard Drive Disks (HDD),pushing them to 
archiving purpose [1].Since Flashtechnology is so widely 
used, its performance shouldbe precisely quantified and its 
impact on the wholesystem, in which it is embedded, 
assessed relative toIO profiles and its execution 
mode.However, thereare currently few studies providing 
such information,which cannot just be deduced from the 
behaviouralanalysis of other storage devices such as Hard 
DiskDrives(HDD)andmemories(SRAM,DRAM...etc)becauseth
eiraccessoperationsarecompletelydifferent [2].Some studies 
to adapt or/and proposeaccessalgorithmsforFlash-
baseddeviceswereachieved [3, 4, 5] but they still restricted 

to specificapplications. 

 
The main specific features of Flash memory mak-ing it so 
different from the other storage devices arethe limited erase 
cycles and the big disparity betweentheoperations access 
times.   The firstone associatea fixed lifetime to the Flash 
chip since its manufac-turing,dependingon its typeand 
density.In orderto maximise this Flash longevity an even 
erase oper-ations distribution, thus a good wear levelling 
shouldbeguaranteed.Inthefirstpartofthispaperandprior to 
giving a quantitative characterisation of thesystemunder 
study,weconsidernexttheeffectoftheaddress mapping 
chosen to provide good wear level-ling and we propose a 
simple static map that guar-antees data availability, and 
hence maximum devicelongevity. The second feature deals 
with the fact 
thatservicetimesofthethreeFlashmemoryaccessoper- 
ations(read/write/erase)areconstantbutpresentasignificant
disparitywhateverthechiptype.Eraseoperations,beingcostlyi
ntime,introducelongde-
laysforwaitingreadorwriteoperationsperformedafterthem.
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Thesedelayssignificantlychangethedeliveredperformancean
dmakeworkloadschedul-
ingcrucial.Ontheotherhand,applicationsrequiregoodorganis
ationoftheirworkloadtoconsistentlyrealisefasteraccesswitho
uthavingtocustomiseineveryspecificcontextforeachaccesspr
ofile.  Whilsttrueforanystoragedevicetechnology,itisparticu-
larlyimportantforFlashbecauseitsaccesstimeislargelylocatio
n-
independent,especiallyforreads.Itiscomplicatedandprobably
unnecessarytoincludethiskindofworkloadaccessoptimisationi
ntheappli-
cationlayersortoaddasoftwarelayertoscheduletheworkload 
generated byapplications according totheFlashoperation 
modes.Aneasyway 
tomeetgoodperformancewithoutanyschedulingofrequests,is
tochoosethemostappropriateexecutionmodefromthemostba
sicprovidedones(priority,preemption)accordingtotheinputI
Oprofile.Inthesecondpartofthispaper,weconsidertheeffectoft
heworkloadonFlashdeliveredperformanceusingdifferentIOi
n-
terarrivaltimedistributions.Wefocusonthethreemainexecuti
onmodes:withoutpriorityamong 
thethreeaccessoperations(mode1),givingprioritytoreadsina
non-preemptivepolicy(mode2)andfinallygiving priority 
toreadswithpreemption(mode3).Intherestofthepaper,sectio
n2givesasuccinctpresentationofFlashtechnologybackground
.Sec-
tion3isdedicatedtothewearlevellingstudy.Itdescribestheuse
dtools,presentstheproposed map-
pingfunctionsanddetailstheirvalidation.Section4isdedicatedt
otheanalysisoftheIOprofilesandtheoperationsexecutionmod
esimpactontheperfor-mance.Section4.3presents 
theobtained 
numericalresultsanddiscussiontheirsignificance.Finally,sec-
tion 5 summarises our main conclusions and 
suggestsdirectionsforfuturework. 

 
Background 
Flashmemoryisconsideredamajor,non-volatilemass-
storagecomponentduetoitsshockresistance, 
 
vibration tolerance, light weight and low energy con-
sumption; not to mention its high capacity.It is al-ready used 
in a wide range of applications and en-
vironments,fromdailyentertainment,e.g.inMP3players, 
through personal computers, for web 
serversmachines[6]andcriticalsystemssuchassatellitesys-
tems[7]. 
There are two types of Flash memory, labelled ac-
cordingtoitsconstruction:NORandNAND.Theformerhaslower
densityandhighercostbutprovidesfast random access and 
can be easily re-programmed,making it most suitable for 
storing code. Another ad-vantage of NOR is its lower 
susceptibility to corrup-
tionthanNAND,partlybecauseofthebadblocksthatexistinthela
tterfromthetimeofmanufac-
ture.NANDFlash,ontheotherhand,hasaverylarge storage 
capacity and provides fast data accessfor large read/write 
requests, making it most suitablefor storing data [8]. This is 
the most widespread andthe one we consider.In fact the 

density is about 
8timesmoreforNAND[9],atacostthatis4to8times cheaper 
than NOR. Although erases are signif-icantly faster on NOR, 
they can be pre-scheduled inNAND, essentially running in a 
garbage 
collector.Inaddition,MLCn(MultiLevelCell)technologymul-
tiplies the storage capacity of the Flash memory 
chipbyhaving n-bit information 
percell.MLC2becomesaclassicaldevice,presentinmostmobilec
omponentssuch as cameras and smart-phones.The first 
MLC3was developed by Hynix Semiconductor in 2008, fol-
lowed by Samsung in 2009 to produce initially mi-croSD 
cards and to support more competitive highdensity 
consumer electronics storage solutions in thenearfuture. 
ANANDFlashmemorychipiscomposedofafixed number of 
blocks, each of which is partitionedinto a fixed number of 
pages.Every page consists oftwo areas:a data area for native 
(user) data and 
aspareareafordatastatusinformation(figure1). 
Ablockistheeraseoperation’sunitofstorage,whilst a page is 
the read and write operation’s unit.No‘in-
place’updatesareallowedinNANDFlash.Whendataismodified,
thenewversionmustbewrittentoanavailable page–called 
thelivepage.Thepagecontainingtheoldversionisconsideredad
eadpageandisinvalidated.Astimepasses,ficient garbage 
collection process, using a relativelyreduced mounting 
time.Recently, comes UBIFS [17]for Unsorted Block Images 
File System, designed byNokia for Flash-based devices as 
Solid State 
Drives(SSD).Itprovidesfastermountingtimeandgoodwear 
levelling comparing to the JFFS2 random one.The second 
class of file systems are designed to workunder any file 
system.We can cite YAFFS (Yet An-other Flash File System) 
which is the first file 
systemdesignedspecificallyforNANDdevices,considering 
the number of dead pages increases and the 
systemreclaimsthem,inordertoperformfurtherwriteoperatio
ns, by running a garbage collection 
process.However,theerase/write 
unitmismatchgeneratesadditionalcopyingofremaininglivepa
gesfromablock,whenerasingit,toanotherone.Anotherlimitati
on of the NAND Flash technology is that 
thenumberoferaseoperationsislimitedtoabout105

 

[10] forSLC (Single Level Cell) and to 104for MLC2(Multiple 
Level Cell) [11].As any recycling of deadpages introduces 
block erasing, an even erase-
countdistributionovertheFlashmemoryblockscannotbeachie
ved,whichresultsinthe“wear-levelling”problem.     
Thishasasignificantnegativeimpactonthelongevityofthemem
orychips.Muchlikethe‘smallwriteproblem’intraditionalRAID
5systems[12]. 

 
Many studies fromtheliterature were dedicatedto Flash 
memory, especially to associated file sys-tems and more 
recently but less significant to pro-vide formal Flash 
models, as in [13, 14].In fact,several file systems have been 
developed to managedata on Flash memories. We can 
separate them intotwo classes: Native Flash file systems and 
non-natinefile systems which can be used with any 
operatingsystems.The former class is used for raw 



Flashmemories, directly integrated in embedded systemsas 
JFFS (Journal Flash File System) which is a log-structured 
file system for the NOR Flash device [15].Its second version 
(JFFS2) [16] supports NAND de-
viceswithasequentialI/Ointerfaceandamoreef- 
dataintegrityasapriority[18].IttakesintoaccounttheFlashcon
straintsandexploititsfeaturestomax-
imisetheperformanceandtherobustness.Itssec-
ondversion(YAFFS2)accommodatesanewerchipwith larger 
pages. More recently, LogFS [19] 
supportssnapshotsandismorespecifictolargedevicesduetoits
reducedmountingtimeanditsefficientgarbagecollectionproce
ss[20].Finally,wecite[21,22]forhybridarchitectureshandling
both FlashandRAM.AlloftheseFlashfilesystems have an 
FTL(FlashTranslationLayer)composedessentiallyoftwoparts
:anallocatorprocessforthelogicaltophysicalspacemappingan
dacleanerprocessforthegarbagecol-
lection.Themappingbetweenthelogicallocationandthephysic
aloneisperformedusingmetadatainthepages’spare areas, 
mountedat 
theinitialisationphasebeforeanyI/Ooperationtakesplace.Gar
bagecollectionisperformedinthebackgroundtomake 
freespaceforwriteoperations. 

 
Wearlevellinganalysis 
The reliability aspect is capital in storage systems. InNAND 
Flash based systems, either with SLC or 
MLCtechnology,thereare4typesofreliabilityproblems: 
Wearoutblocks, 
Informationretentionloss, 
Writedistrurbphenomenon, 
Readdistrurbphenomenon. 
The first class of problems is the most importantone as the 
chip blocks cannot be used anymore 
andthecontaineddataislostfortheuser.Toavoidthis 
situation, a good wear levelling should be guaranteedto 
exploit the longevity of the chip at its maximum.There are 
many algorithms to implement the 
wearlevelling.Mainly,theycanbesplitintotwocate-
gories:staticanddynamicalgorithms.Theformerissimple 
touse,itscostisnegligibleandprovidesan average wear 
leveling quality for all IO profiles 
asitiscompletelyindependentfromtheapplicationsIOrequests 
accessing thestored data.Thesecondclass is a bit more 
complex to implement as it builtsstatistics first and keeps 
maintaing them over 
time,thenadaptsthewriterequestsdistributionusingthese 
statistics according to the blocks use 
indicator.Thisiscostlyinbothcomputingtimeandstoragespace
butprovidesawearlevelling“alacarte”whichisconsideredopti
mal. 
In this work, we propose a very simple static map-ping 
functions and assess their impact on the deviceuse at 
different levels as well as on its real longevityduration. 
 
In this section, we present the tools used to im-
plementourmappingfunctionsandstudythere-sulted wear-
levelling algorithm in subsection 3.1, wedescribe our 
proposition in subsection 3.2 and 
finallywevalidateitinsubsection3.3. 

 
Architecture’sconfigurationandtools 
In this study, we consider a specific architecture 
butthiscaneasily beextendedto alternate Flashcon-
figurations by using their description files, availablein 
hardware libraries. In the present case, the 
targetarchitecture is a package composed of 16 chips of 
theK9KAG08U0MNAND-Flashof2GB[23],connectedby a 
single 40MBps channel. This Flash storage pack-age is seen 
as a single address space, a logical storagepool. 
Wewrotea customised event driven simulatorin Cto 
represent the Flash storage system and its associ-ated 
modes of operation. In this section, we use onlythe mapping 
module where the proposed static wearlevelling algorithm 
is implemented.For all the per-formed simulations, we 
considered traces of 2M reqseach. 

 Proposition 
Wegivebelowthestaticmappingfunctionsweproposetoimple
mentthewearleveling: 
 
chipID=ladr%nbchip 

blocID=(chipID/nbchip)%chipsizepageID=ladr/(chipsize∗
nbchip) 
ladris the logical address, nb chip is the number ofFlash chips 
in the package and chip size is the num-ber of pages per 
Flash chip. The % denotes the mod-ulooperationand(chipID, 
blocID, pageID)denotethe physical address of any page 
(address unit) in thepackage. We observed the wear 
levelling achieved atthree different levels: the chip, the block 
and the pagelevels and we considered three parameters: the 
num-berofaccessestoeveryFlashchipamongthe16in 

total, the number of erases of every block among the16 × 8 
ones and the number of writes for every pageamongthe16 

×8×64ones. 

 
Staticwearlevelingqualityvalida-tion 
The validation of the efficiency of our mapping func-tions in 
providing a good wear levelling is performedtrough3phases: 
Validation of a uniform utilisation of Flash 
chipswithinthepackage. 
Figure 2 shows the mean chip utilisation (Cuse)and the 

package utilisation (Puse) as percentagesof time, against the 
arrival rate.Both are inde-pedentoftheexecution 
mode.Thisisrelatedto the constant service time, whether the 
serviceis delayed or not, interrupted or not.They arelinear, 
increasing with the arrival rate.The Cuserepresents the mean 
chip utilisation but can beconsidered as the chip utilisation 
because all thechips are almost equally used, as shown in 
fig-ure3,duetothegoodwearlevelling. 
Validation of a good wear levelling at three hier-
archicallevels:chip,blockandpage. 
Figures4,5and 6represent showthegoodwear 
focusing on the emulation of the hardware functionsand the 
second generates suitable IO traces for theconductedtests. 
Weconsiderthearchitectureconfigurationde-scribed in 3.1, 
where data is manipulated using threecommands – read, 
write and erase – one at a time.The service times of these 
commands were estimatedas constants by measurement on 
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real chips as 130µs,305µs,1.5ms 
respectively,includingthebus trans-fer time.Therefore, our 
performance study focuseson the waiting time, unique 
parameter affecting theresponsetime. 
We use our event driven simulator,representingthe Flash 
storage system and its associated modes ofoperation.Its 
execution module processes events asthey occur – for 
example the arrival of a request of agiven type or the 
completion of an access – by main-tainingastandard 
eventdiary.Inaddition totheFIFO execution mode, both 
priority and 
preemptionpoliciescanbeaccommodated.Thesimulatoren-
surescorrectimplementationoftherelativeprioritiesbetween 
two classes: a high priority class composedof reads only and 
a low priority class composed ofwrites and erases, which 
have equal priority and areprocessed in order of arrival.In 
the case of the pre-
emptiveprioritymode,awriteoreraseisinterruptedas soon as 
a read enters the system. The interruptedoperation being 
resumed as soon as there are againno reads outstanding, but 
subject to further interrup-tion. In non-preemptive mode, a 
write or erase, oncestarted,isallowed tofinish,any newread 
arrivalsbeingqueued. 
For the investigation of the behaviour of a 
Flashstoragepackageservingvarious IOprofiles,devel-oped 
IO generator handles different probability dis-
tributionsforboth logical adresses and IO interar-
rivaltimes[24]. 

 
Experimentations 

Simulations were run using different synthetic IO 
workloads generated using our generator. The re- 
quests’ type is consistent with standardised OLTP 
criteria, e.g. a fixed read:write ratio of 3:1 with ar- 
rival rates ranging from 50req/s to 5000req/s, and 
each address trace had a total of 500,000 
requests.Various interarrival times were 
considered using dif- ferent distributions: Poisson 
for the ‘typical user’ case2, Erlang for the multi-
source case and Pareto for the heavy tailed case, in 
an attempt to be rep- resentative of read 
environments. The Erlang traces are chosen to see 
the effect of reduced variance in the interarrival 
times. In fact, every exponential stage in the Erlang-
n random variable is n times as fast as the Poisson 
process. This gives a variance of 1/(nλ), lower than 
the variance of the interarrival time in the 
corresponding Poisson process with rate λ, by a 
fac- tor of n. Conversely, the Pareto traces were 
chosen to examine the effect of increased variance, 
again keep- ing the mean interarrival time the same 
at 1/λ. We used a Pareto random variable with 
range [1, [ and probability distribution function F 
(x) = 1 x−α. Direct integration shows that this has 
nth moment α/(α     n),  which exists if and only if α 
> n;  thus, 1/2 < λ < 1 for the variance to exist.  To 
achieve this, we first scale a range of actual arrival 
rates, so as to satisfy the inequality, then generate 
the Pareto- based input traces, and then scale these 

back again by multiplying by the same scaling 
factor. 

 
 Resultsanddiscussion 

The focus is placed on the queueing time for 
each ofthe threeoperation classes (read,write 
and 
erase)becauseitsvariabilityhasasignificanteffect
onoverallFlashperformanceduetoitsfixedservic
etime. 

 
Queueing time is considered the main 

performancemetric for every type of operation 
because of the con-
stantservice(oraccess)timeforallthreeaccesstyp
es(read/write/erase).Thusqueueingtimeisapur
eperformance metric, being entirely an 
overhead 
thatdependsonlyontheexecutionmode.Weinves
ti-gated the three main modes:no priority 
among theoperations(mode1);non-
preemptiveprioritytoreadoperations (mode 2); 
and finally preemptive read pri-ority(mode3). 

 
 

Conclusion 
In this paper, we have proposed simple static map- ping 
functions that ensure good wear levelling for uni- formly 
distributed accesses to the storage space, as well as for 
accesses with hot spots, even in quite ex- treme case with 
1% of the storage space accessed 100 times more frequently 
than the other 99%. Such a static scheme avoids the 
complex implementation and the frequent statistics 
extraction and management routines called under dynamic 
mappings. Consider- ing the queueing time, we confirmed 
using the Pois- son distribution which provides a standard 
against which to assess other workload types, that (of 
course) 
it increases as the arrival rate increases, more rapidly as the 
system approaches instability. We observed similar 
qualitative behaviour for the Erlang case but the queueing 
times are smaller, due to the lower vari- ance in the 
interarrival times, while the queueing times for the Pareto 
distribution, where the variance is larger, increase at certain 
arrival rates. We showed that the chips within the package 
are equally under- used even when the arrival rate is high, 
and similarly for the corresponding queueing time. This 
suggests that, rather than using the package as a sole unit, it 
is better to exploit the parallelism available among the Flash 
chips for improved usage of the hardware com- ponents and 
a reduced queueing time. This should 
be achieved in the short term, taking into account the 
concurrent access management to chips, the re- quests’ 
scheduling policies and the shared bus alloca- tion. Further, 
it should be extended to the Flash bi- dimensional vector 
configuration. In the longer term, we plan to extend our fluid 
model for the Flash pack- age storage system [14] to handle 
Flash chips operat- ing in parallel. 
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