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       Abstract 
Beam models have been developed and exploited extensively over the last few decades for the structural analysis of 

slender bodies, such as columns, arches, blades, aircraft wings and bridges. The three-dimensional (3D) problem, in a 

beam model, is reduced to a set of one-dimensional (1D) variables, which only depend on the beam-axis coordinate. 1D 

structural elements, or beam elements, are simpler and computationally more efficient than 2D (plate/shell) or 3D (solid) 

elements. For instance, in a finite element (FE) scenario, beam models have no aspect ratio constraints. These features 

make beams still very appealing for the static and dynamic analyses of structures. 

Over the years, many beam models have been developed according to different approaches. The main contributions to the 

development of the beam theory are outlined in this section by referring to some macro categories. Each category is then 

described in detail in the subsequent sections of this paper. 

   Introduction 

1. Historical review of beam theories starting 

from Leonardo da Vinci 
The first known description of the mechanical 

behavior of a beam under bending was given by 

Leonardo da Vinci. In his Madrid Codex (Da Vinci, 

1493), Leonardo correctly described the bending 

behavior of a slender beam, as shown in Fig. 

1. He hypothesized the well-known linear distribution of 

the axial strain on the cross-section. 

The classical, oldest and most frequently employed 

beam models are those by Euler-Bernoulli (Bernoulli, 

1751; Euler, 
 

 
 

    
 

Fig. 1 Leonardo‟s description of beam bending (Da Vinci, 1493). 

 

1744) (hereafter referred to as EBBT), Saint-Venant 

(1856a,b) (DSV) and Timoshenko (1922a,b) (TBT). 

These theories share many important features but 

also have some important differences. A 

comprehensive comparison of EBBT and TBT can 

be found in Mucichescu (1984) and in Section 3. 

TBT enhances EBBT and DSV by considering the 

shear deformation effect. However, TBT can only 

give a uniform shear distribution along the cross-

section of the beam. It is well-known that a more 

appropriate distribution should at least be parabolic 

in order to accommodate the stress-free boundary 

conditions on the unloaded edges of the beam. Shear 

correction factors related to the cross-section 

geometry are commonly employed as remedies. 

While EBBT and DSV are reliable tools for the 

analysis of homogenous, compact, isotropic slender 

structures under bending, TBT can also be employed 

for moderately thick orthotropic beams. 

Classical beam theories represent a computationally 

cheap and, to some extent, reliable tool for many 

structural mechanics problems. These models are 

essentially based on a linear axial, out-of-plane 

displacement field and a constant transverse, in-plane 

displacement field. In other words, these models can 

predict linear axial strain distributions and rigid 

transverse displacements. Although this simplified 

displacement field requires no more than five degrees 

of freedom (DOFs), it also precludes the detection of 

many effects, such as out-of-plane warping, in-plane 

distortions, torsion, coupling effects, or local effects. 

These effects are usually due to small slenderness 

ratios, thin walls, geometrical and mechanical 

asymme- tries, and the anisotropy of the material. 
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Many methods have been proposed to overcome the 

limitations of classical beam theories and to allow 

the application of 1D models to any geometry or 

boundary condition, without jeopardizing their 

computational efficiency with respect to 2D and 3D 

models. Several examples of these models can be 

found in well known books on the theory of 

elasticity, for example, the book by Novozhilov 

(1961). A possible grouping of all these 

methodologies to build higher-order beam models 

could be the following: 

• The introduction of shear correction factors. 

• Warping functions. 

• Saint-Venant based 3D solutions and the Proper 

Generalized Decomposition method (PGD). 

• The Variational Asymptotic Beam Sectional 

Analysis (VABS), which is based on the 

Variational Asymptotic 

Method (VAM). 

• The Generalized Beam Theory (GBT). 

• The Carrera Unified Formulation (CUF). 

As previously mentioned, some of the first proposed 

approaches were based on the introduction of shear 

correction factors to improve the global response of 

classical beam theories, as in the works by 

Timoshenko (1922a,b) and Timoshenko and Goodier 

(1970), Sokolnikoff (1956) and Cowper (1966). 

The introduction of warping functions to improve the 

displacement field of beams is another well-known 

strategy. Warping functions were first introduced in 

the framework of the Saint-Venant torsion problem 

(Ladevze and Simmonds, 1998; Lubliner, 1990; 

Sokolnikoff, 1956). Some of the earliest 

contributions to this approach were those by 

Umanskij (1939), Vlasov (1961) and Benscoter 

(1954). 

The Saint-Venant solution has been the theoretical 

basis of many advanced beam models. 3D elasticity 

equations were reduced to beam-like structures by 

Ladevéze and his co-workers (Ladéveze and 

Simmonds, 1996).  Using this approach, a beam 

model can be built as the sum of a Saint-Venant part 

and a residual part and then applied to thick beams 

and thin-walled sections. 

The PGD for structural mechanics was first 

introduced by Ladevéze (1999).  PGD can be 

considered as a powerful tool to reduce the 

numerical complexity of a 3D problem. Bognet et al. 

(2012, 2014) applied PGD to plate/shell problems, 

whereas Vidal et al. (2012) extended PGD to beams. 

Asymptotic methods represent a powerful tool to 

develop structural models. In the beam model 

scenario, the works by Berdichevsky (1976) and 

Berdichevsky et al. (1992) were among the earliest 

contributions that exploited the VAM. These works 

introduced an alternative approach to constructing 

refined beam theories in which a characteristic 

parameter (e.g. the cross-section thickness of a 

beam) is exploited to build an asymptotic series. 

Those terms that exhibit the same order of magnitude 

as the parameter when it vanishes are retained. 

Some valuable contributions on asymptotic methods 

are 

 
 

 

Fig. 2 Coordinate frame of the beam model. 
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Fig. 3 Homogeneous condition of transverse stress components 
at the unloaded edges of the beam. 

 

those related to VABS models, as in Volovoi et al. 

(1999). 

The GBT has been derived from Schardt‟s work 

(Schardt, 1966, 1989, 1994a). The GBT enhances 

classical theories by exploiting a piece-wise 

description of thin-walled sections. It has been 

employed extensively and extended, in various 

forms, by Silvetre and Camotim, and their co-

workers (Silvestre and Camotim, 2002). Many other 

higher-order theories, based on enhanced 

displacement fields over the beam cross-section, have 

been introduced to include non-classical effects. Some 

considerations on higher-order beam theories were 

made by Washizu (1968). Other refined beam 

models can be found in the excellent review by 

Kapania and Raciti (1989a,b), which focused on 

bending, vibration, wave propagations, buckling and 

post-buckling. Refined beam models have been 

exploited extensively for aeroelastic applications. 

Some of the most important contributions are those 

by Librescu and Song (1992) and Qin and Librescu 

(2002). 

One of the most recent contributions to beam 

theories has been developed in the framework of the 

CUF (Carrera and Giunta, 2010). The main novelty 

of CUF models is that the order of the theory is a 

free parameter, or an input, of the analysis and it can 

be chosen via a convergence analysis. CUF can also 

be considered as a tool to evaluate the accuracy of 

any structural model in a unified manner. 

This paper is organized as follows: Section 2 offers a 

brief description and literature review of the main 

categories of beam models; classical beam models 

and CUF models based on Taylor polynomials are 

described in Section 3; Sections 4, 5 present the CUF 

beam models based on Lagrange polynomials and 

the Component-Wise approach, respectively; 

Sections 6-7 provide numerical examples and 

benchmarks that were assessed through the 1D CUF 

for static, dynamic and aeroelastic problems; the main 

conclusions are drawn in Section 8. 

 

2. Significant contributions debated over the last decades 

 
This section provides details on some of the 

most important beam models that have been 

developed in the last few years and, in most cases, 

are still being developed. For the sake of brevity, 

only the main features of each formulation are given 

and described in order to highlight the pros and cons. 

The orthogonal reference system shown if Fig. 2 is 

adopted throughout this paper. 

 
 Shear Correction Factors 

Shear correction factors have been introduced 

over the years to enhance classical beam theories 

(Cowper, 1966; Sokolnikoff, 1956; Timoshenko, 

1922a,b; Timoshenko and Goodier, 1970). TBT, in 

fact, can only lead to a uniform shear distribution 

along the cross-section of the beam. It is well-known 

that a more appropriate distribution should at least 

be parabolic in order to accommodate the stress-free 

boundary conditions on the unloaded edges of the 

beam, as shown in Fig. 3. Shear correction factors 

can be defined in various ways, and they depend on 

the problem characteristics to a great extent. Two 

examples of shear correction factor definitions are 

given hereinafter. Cowper (1966) considered the 

mean 

 

 
 

 

Fig. 4   GBT approximation, global, ()g, and local, ()L, reference systems. 

 
deflection of the cross-section (W), the mean angle of rotation of the cross-section around the neutral axis (Φ) and the 

total transverse shear force acting on the cross-section (Q), 

W =  
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Φ = 
1 ∫  ∫   

xuy dx dz (2) 

Q = 
∫  ∫  

σxy dx dz (3) 

where A is equal to the cross-section area, and I is the moment of inertia of the cross-section. The shear correction factor, 

K
C
, is computed by exploiting the following equation: 

∂W Q 

 

where G indicates the shear modulus. 

∂y 
+ Φ = 

KC AG 
(4) Gruttmann and Wagner (2001) adopted the following definition, which had been introduced by Bach and Baumann (1924) and Stojek (1964): 

2 2  y 

The analysis of thin-walled beam structures 

requires the use of advanced structural models. The 

assumption of a rigid cross-section introduced by the 

classical models does not allow the cross-sectional 

warping that usually appears in these structures to be 

included. The GBT represents a family of models 

introduced to face this problem and to accurately 

describe the mechanical behaviour of thin-walled 

members. GBT originated with the works of Schardt 

(1966, 1989) and Schardt and Heinz (1991). First-

order beam models based on GBT were proposed in 

the works by Davies and Leach (1994), while refined 

second-order models were presented by Davies et al. 

(1994). An extension to orthotropic materials was 

proposed by Silvestre and Camotim (2002) and 

Silvestre (2002). The GBT approach, as shown by 

Silvestre and Camotim (2002), assumes that the 

displacement field of a prismatic thin-walled beam 

(see Fig. 4a) is a product of two contributions: 

u(xg, yg, 
zg) = 
u(s)ψ(y

g) (6) 

where u(s) is the mid-plane displacement vector, 

which depends on the s coordinate (see Fig. 4b) 

while ψ(yg) is an amplitude function defined over 

the beam axis y. Figure 4c shows how the beam can 

be assumed to be composed of a number of panels 

according to GBT (see Silvestre and Camotim 

(2002)). In the GBT simplest form, it can be 

assumed that for each panel: 

• Kirchhoff‟s hypotheses are verified (γxy = 0, γxz 

= 0 and εxx = 0). 

• The only membrane (m) strain considered is the 

longitudinal one, i.e. εm
 ≠ 0, while all the 

flexural ( f ) strains are 

taken into account, i.e. ε f
 ≠ 0, ε f

  ≠ 0 and γf
  ≠ 0. 

The mid-plane curve can be considered as a piece-wise 

curve defined using a number of nodes, as shown in 

Fig.4c. If the displacements, u(s), are assumed to have a 

linear behaviour, the displacements field becomes: 

u(xg, yg, 
zg) = 
ukFk(s)ψ(

yg) (7) 

where Fk(s) is a linear function that is equal to 1 in the k 

− ht node and 0 in the other nodes, while uk is the 

displacement vector in the k − ht node. Moreover, 
GBT introduces a number of geometrical relations that 
allow the transversal displace- ments, ux and uz, to be 
expressed in terms of the longitudinal displacement, 
uy. 

The GBT has been widely used in the analysis of 

thin-walled structure and, over the past twenty years, 

this class of mod- els has been used to solve several 

structural problems and a few examples are given 

hereinafter. The GBT was applied to dynamic 

problems in the works by Bebiano et al. (2008, 

2013), in which global and local modes were 

investigated. The elastic stability of thin-walled 

structures has been investigated extensively using 

the GBT. Schardt (1994a,b) used these models to 

perform the buckling analysis of thin-walled 

structure. The same approach was used by 

Goncalves and Camotim (2004) to investigate the 

local and the global buckling of isotropic structures. 

GBT models were also used to perform buckling 

analyses in the works by Dinis et al. (2006), 

Silvestre (2007) and Basaglia et al. (2008). An 

experi- mental verification of the GBT for the 

buckling analysis was provided by Leach and Davies 

(1996). The capabilities of GBT in the analysis of 

thin-walled structures and their low computational 

costs make these models particularly useful for non-

linear analyses. Goncalves and Camotim (2007) 

introduced a non-linear formulation based on GBT 

to investigate the post-buckling behaviour of thin-

walled structures, in which plasticity effects were 

included. Other non-linear beam models based on 

GBT were presented by Basaglia et al. (2010), 

Abambres et al. (2013) and Abambres et al. (2014). 

 
 Warping functions 

The so-called warping function was introduced 

with the Saint-Venant torsion problem, which has 

been formulated in many textbooks and papers over 

the years (Ladevze and Simmonds, 1998; Lubliner, 

1990; Sokolnikoff, 1956) as a basic example of the 

theory of elasticity. According to the Saint-Venant 

free warping problem, the warping function is the 

solution of Laplace‟s equation subjected to Neumann 

boundary conditions. 

The most well-known theories that account for 

higher-order phenomena through the use of the 
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warping function are those by Vlasov (1961) and 

Benscoter (1954). In these theories, non-uniform 

warping in thin-walled profiles is taken into account 

by including, in the displacement field, the following 

longitudinal warping displacement, u
wrp

: 

u
wrp

(x, y, 
z) = Γ(x, 
z) µ(y) (8) 

where y is the longitudinal axis of the beam, x and z 

are the coordinates of the cross-section, µ is the 

warping parameter, and Γ is the Saint-Venant 

warping function, which depends on the geometry of 

the cross-section. In the case of a shear- bending 

problem on the xy-plane, the warping function is a 

cubic function of the x-coordinate (Reddy et al., 

1997) and µ does not necessarily depend on the γxy 

cross-sectional strain. On the other hand, in the 

case of torsion, the warping parameter µ is the 

derivative of the rotation angle (Vlasov, 1961) or an 

independent function (Benscoter, 1954). 

The application of the Vlasov beam model to thin-

walled beams with a closed cross-section leads to 

unsatisfactory results, since the mid-plane shear 

strains in the walls cannot be neglected. The first to 

formulate the warping function for closed profiles 

was Umanskij (1939). From then on, many 

researchers have developed advanced beam theories 

based on the use of the Saint-Venant warping 

function. Some recent important contributions are 

mentioned hereinafter. El Fatmi (2007a,b,c) has 

developed a non-uniform warping theory that 

accounts for three independent warping parameters 

and the related warping functions. Prokic´ (1993, 

1996a,b) has formulated a new warping function that 

is able to account for both closed and open cross-

sections. Sapountzakis and his co-workers have 

developed a boundary element method that includes 

the warping DOF for non-uniform torsional dynamic 

(Sapountzakis and Mokos, 2006; Sapountzakis and 

Tsipiras, 2010) and static (Sapountzakis, 2000; 

Sapountzakis and Mokos, 2003; Sapountzakis and 

Protonotariou, 2008) analyses. Wackerfuß and 

Gruttmann (2011) have developed a FE based on the 

Hu-Washizu variational formulation and focussing 

on the construction of „locally-defined‟ warping 

functions. In Gruttmann et al. (2000) and Wagner and 

Gruttmann (2001), the unknown warping function 

has been approximated using an isoparametric 

concept. Prandtl‟s membrane analogy and the Saint 

Venant torsion theory have been used in Chen and 

Hsiao (2007), on the basis of the Vlasov theory, to 

obtain an approximate Saint Venant warping function 

for a prismatic thin-walled beam. In Ferradi et al. 

(2013), the warping functions have been determined 

iteratively using equilibrium equations along the 

beam. Yoon and Lee (2014) have formulated the 

entire warping displacement field as a combination 

of the three basic warping functions (one free 

warping function and two interface warping 

functions). 

 
 3D Solutions based on the Saint-Venant Model 

and the Proper Generalized Decomposition 

Ladéveze and Simmonds (1996), Ladéveze et al. 

(2004), and Ladevze and Simmonds (1998) have built 

3D solutions for beam problems by adding 

enrichment terms to the Saint Venant solution. In 

such a framework, the displacement fieldcan be 

written as 

u(x, y, z) = uS V 

(x, y, z) + uNS V 

(x, y, z) (9) 

The latter term, also known as the decaying term, 

takes into account various non-classical effects, e.g. 

the end-effects. Such solutions are exact since they 

do not add any further assumptions to the 3D 

elasticity equations. On the other hand, these 

solutions are problem dependent. 

Another important contribution to the solution of the 

3D elasticity problem is the PGD, which was first 

introduced by Ladevéze (1999). Given a 3D problem, 

PGD decomposes it as the summation of N 1D and/or 

2D functions (y is the axial coordinate of the beam), 

u(x, y, z) ≈ ∑ 
U

x
(x) · U

y
(y) 

· Uz
(z) (10) 
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or, 

 

u(x, y, z) ≈ ∑ Uxz
(x, z) · U

y
(y) (11) 

where U are the 2D or 1D unknown functions. This 

decomposition allows one to solve the 3D problem 

with 2D or 1D complexity. Bognet et al. (2012, 

2014) applied PGD to plate/shell problems, while 

Vidal et al. (2012) extended PGD to beams. 

 
 Variational Asymptotic Method 

Axiomatic theories have been introduced by 

hypothesizing the most important mathematical 

terms that need to be considered for a given 

structural problem. Further improvements are 

generally obtained by adding terms to the series ex- 

pansions. An important drawback of axiomatic 

methods is the lack of information about the accuracy 

of the approximated theory with respect to the exact 

3D solution. In other words, it is not usually 

possible to a-priori evaluate the accuracy of an 

axiomatic theory. This lack of information has to be 

overcome by engineers who have to evaluate the 

validity of a theory on the basis of their knowledge 

and experience. 

The asymptotic method can be seen as a step 

towards the development of approximated theories 

with known accuracy with respect to the 3D exact 

solution (see also Cicala (1965)), which, in the beam 

case, is a method that can approximate the 3D energy 

though 1D terms with known accuracy. 

The VAM was first introduced by Berdichevsky 

(1976) in the beam model scenario. VAM exploits 

small parameters of a beam structure, such as the 

thickness of the cross-section, h. The unknown 

functions (e.g. warping) are then expanded 

considering h as: 

f = f0 

+ f1 h 

+ 
O(h

2
) (12) 

The strain energy is then obtained according to this 

expansions and only the terms of a certain order 

with respect to h are retained. The unknown 

functions, which are asymptotically correct up to a 

given order of h, are then obtained by minimizing 

the strain energy. The solution to this variational 

problem can be found in closed-form for a few cross-

section geometries and materials only. In order to 

overcome this limitation and to be able to deal with 

anisotropic and non- homogenous materials, as well 

as arbitrary cross-sections, the VABS has been 

developed (Volovoi et al., 1999; Wang and Yu, 2014; 

Yu and Hodges, 2004, 2005; Yu et al., 2002). VABS 

exploits the FE approach over the beam cross-

section to solve the variational problem. 

The development of asymptotic theories is generally 

more difficult than the development of axiomatic 

ones. The main advantage of these theories is that 

they contain all the terms whose effectiveness is of 

the same order of magnitude. Moreover, these 

theories are exact as h, or any other small parameter 

that is exploited to build the expansion, → 0. 

 Carrera Unified Formulation 

The CUF is a hierarchical formulation that can 

be used to reduce 3D problems to 2D or 1D ones in a 

unified manner, that is, by exploiting arbitrary rich 

expansions of the unknown variables. In the 

structural mechanics scenario and in a displacement 

based formulation, the CUF defines the displacement 

field of a structural model as the expansion of generic 

functions Fτ, 

u = Fτuτ, τ = 1, 2, ...., M (13) 

where u is the displacement vector, uτ is the 

generalized displacements unknown array and M stands 

for the number of terms of the expansion. According to 

the Einstein notation, the repeated subscript, τ, indicates 

summation. The expression 

given by Eq. 13 is valid for both 1D and 2D models 

since these models are obtained by acting on the 

expansion functions 

Fτ. In fact, 

1D : u(x, y, z) = Fτ(x, z)uτ(y), τ = 1, 2, .... , M1D 

 

2D − S hell : u(α, β, z) = Fτ(z)uτ(α, β), τ = 1, 2, .... , M2D 

 
(14) 

i=1 
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s j 

where α and β are the in-plane curvilinear 

coordinates. Such a displacement field description 

leads to the so-called fundamental nuclei of the 

problem matrices (e.g. the stiffness matrix). These 

nuclei are invariant with respect to the order of the 

expansion and the type of the expansion functions. 

More details are given in the next sections of this 

paper. In the case of 1D models, the expansions of the 

displacement field are related to the cross-section 

coordinates (x, z) while the unknowns of the problem 

are given at a certain location above the cross-

section. In the case of 2D models, the expansions are 

related to the thickness coordinate (z) and the 

unknowns are given in a certain point along z. The 

expansion functions and their order can be arbitrary 

(e.g. polynomials, exponentials, harmonic 

functions). In a FE scenario and upon the 

introduction of the 3D material constitutive relations 

and of the differential geometrical relations, Eq. 14 

leads to the following form of the virtual variation of 

the internal work: 

δLint 

= δu
T
 

K
τsi

 
j
uτi (15) 

where K
τsi

 
j
 is the stiffness matrix written in the 

form of the fundamental nuclei, u is the nodal 

displacement vector and δ is the virtual variation. 

The superscripts indicate the four indexes exploited 

to assemble the matrix: i and j are related to the 

shape functions along the beam axis, while τ and s 

are related to the expansion functions over the cross-

section. The fundamental nucleus is a 3 × 3 array 

that is formally independent of the order of the 

structural model. Eq. 15 is valid for both 2D and 1D 

models. More details about the 2D formulation can 

be found in Carrera (2002, 2003) and Carrera et al. 

(2014c). A detailed literature review about the 1D 

CUF is given hereafter, whereas a comprehensive 

theoretical description of the 1D CUF can be found 

in Carrera et al. (2010a, 2011a, 2012a, 2014c). 

 Thin-Walled and Reinforced Structures 1D 

CUF models were first proposed to study isotropic 

compact and thin-walled structures by Carrera and 

Giunta (2010) and Carrera et al. (2010b). In these 

works, 1D Taylor-like polyno- mials were used to 

describe the cross-sectional displacement field, and 

closed-form and FE solutions were considered. 

Comprehensive expansion order convergence 

analyses have shown how the adoption of higher-

order models can lead to 3D-like accuracy with small 

computational costs (see also Carrera et al. (2013d)). 

In other words, the 1D CUF hierar- chical 

capabilities allow one to deal with different 

structural problems using the same formulation, 

since the expansion order can be set as an input and 

can be conveniently chosen via a convergence 

analysis. Furthermore, studies on locking phenomena 

have been carried out to show that refined 

displacement models do not require Poisson‟s 

locking corrections, while the adoption of parabolic 

or cubic FEs attenuates shear locking. 

The performance of 1D CUF models against 2D 

shell models has been investigated in Carrera et al. 

(2014b) to analyze thin-walled structures. This paper 

highlights the enhanced capabilities of these 1D 

elements, in terms of low computa- tional costs and 

the absence of shear and membrane lockings. 

Furthermore, Refined 1D models can be used to 

analyse thin-walled reinforced structures, as shown 

by Carrera et al. (2013e,j). Complex structures with 

longitudinal and transverse stiffeners were analysed 

and beams were used to model each component. In 

particular, transverse ribs, although being 2D 

elements, were successfully modeled by means of 

refined beams. 

A new class of 1D CUF models has been presented 

in Carrera and Petrolo (2012a) in which Lagrange 

polynomials are used to model the cross-section 

displacement field. The adoption of Lagrange 

polynomials led to the development of models that 

have only pure displacement unknowns. 

Furthermore, Lagrange beams can easily be used to 

model geometric discontinuities and localized 

boundary conditions; they can also be used to locally 

refine the beam model. 

 Buckling, Free Vibration and Dynamic 

Response Analysis 1D CUF has been extended to 

the free vibration analysis of isotropic structures by 

Carrera et al. (2011b) via the finite element method 

(FEM). Closed-form solutions have been considered 

by Giunta et al. (2013d). The shell-like capabilities 

of the 1D CUF were highlighted in this paper. In 

other words, it was shown that 1D CUF models can 

detect those modal shapes that are characterized by 

severe transverse distortions. These modes are typical 

of thin-walled structures and usually require shell FE 

modeling. 1D CUF can detect these modes with at 

least ten times fewer DOFs than shells. Similar 

results have been found for buckling (Giunta et al., 

2013e; Ibrahim et al., 2012a,b). Pagani et al. (2013, 

2014c) have extended 1D CUF to the Dynamic 

Stiffness Method (DSM) to obtain closed-form 

solutions with arbitrary boundary conditions. Carrera 

and Varello (2012) have coupled 1D CUF to the 

Newmark integration scheme in order to study the 

dynamic response of compact and thin-walled 

structures. 

The computational advantages of 1D CUF have 

proved to be extremely high in the cumbersome 

numerical methods that are required for these 
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problems. The dynamic response to typical loading 

conditions of thin-walled structures was detected with 

3D-like accuracy. 

 Composite Structures      Composite structures 

have been investigated though 1D CUF models by 

Catapano et al. (2011) and Carrera and Petrolo 

(2012b). The former considered Taylor beam models 

and closed-form, Navier-Type solutions. The latter 

exploited Lagrange beam models. Complex 

structures, such as aeronautic longerons, were 

consid- ered. The results showed the enhanced 

capabilities of 1D CUF models to detect 3D stress 

fields with 10-100 times fewer DOFs than solid FEs. 

Further enhancements of the 1D CUF have been 

proposed in Carrera et al. (2013h,k) by exploiting 

polynomial, trigono- metric, exponential and zig-zag 

displacement fields. Accurate 

displacement/strain/stress fields were obtained for 

both slender and short structures. 

 FGM Structures Functionally graded material 

beams have been investigated via closed-form 

(Giunta et al., 2010, 2011) and FE (Mashat et al., 

2014) solutions. Static and free vibration analyses 

were considered as well as compact and thin-walled 

structures. The results showed that 1D CUF detects 

the complete three-dimensional displacement and 

stress fields on the basis of the choice of the 

appropriate expansion order. Furthermore, the effect 

of different material distributions on the natural 

frequencies and mode shapes was investigated and 

compared against 3D FEs. 

 Variable Kinematics Models The enhanced 

capabilities of refined models are often only required 

in some portions of the structures, e.g. close to 

geometrical and mechanical boundary conditions. 

This has recently led to the development of 

techniques that can be used to couple lower- and 

higher-order models. Biscani et al. (2011) have 

exploited the Arlequin method to couple different 

beam models along the axis of the beam. Lower 

computational costs were obtained without any 

accuracy penalties. Carrera et al. (2013l) have 

obtained similar results by exploiting Lagrange 

multipliers. Carrera and Pagani (2013, 2014b) have 

introduced multi-line elements by further extending 

the coupling technique, based on Lagrange 

multipliers, to the cross-section level. Refined beam 

models, based on through-the-section variable 

kinematics, were used to analyze thin-walled and 

composite structures and this resulted in improved 

accuracy and lower computational costs. 

 Axiomatic/Asymptotic Analyses and Best 

Theory Diagrams A mixed axiomatic/asymptotic 

approach has recently been proposed by Carrera and 

Petrolo (2011) and Carrera et al. (2012d) to 

investigate the role of each generalized displacement 

component in a refined structural model. Starting 

from axiomatic theories, typical asymptotic analysis 

results can be found for different structural 

parameters, such as thickness, orthotropic ratio or 

boundary conditions. CUF is used to generate refined 

models and the effect of each variable is then 

investigated by evaluating the effects on the solution 

of its deactivation. Through the systematic use of 

this method, all the ineffective variables can be 

found and discarded to build reduced refined 

structural models that have the same accuracy as full 

models, but fewer unknown variables. The effective 

unknown variable set can change to a great extent as 

one or more structural parameters vary. When the 

complexity of the structural problem increases, full 

models should be adopted. 

 Aeroelasticity Refined beam models are 

particularly appealing for aeroelastic applications in 

which computa- tional efficiency and highly accurate 

displacement fields are required. CUF 1D models 

were first exploited for aeroelastic applications by 

Carrera et al. (2013b) and Varello et al. (2011). In 

these works, the Vortex Lattice Method (VLM) was 

coupled to 1D CUF to study the static aeroelastic 

response of lifting surfaces. 1D CUF proved to be 

able to deal with typical aeroelastic bending-torsion 

coupling phenomena, with low computational costs. 

Varello et al. (2013) extended the 1D CUF static 

aeroelastic formulation by exploiting a 3D panel 

aerodynamic method. 

Unsteady aeroelasticity for flutter analyses has been 

dealt with by Pagani et al. (2014a) and Petrolo (2012, 

2013) through the Doublet Lattice Method (DLM). 

FEs and the DSM were employed to solve the 

aeroelastic problem. Flutter conditions were 

accurately predicted with shell-like accuracy. 

Carrera and Zappino (2014) and Carrera et al. 

(2014a) have exploited 1D CUF models, based on 

Lagrange polynomials, to investigate the supersonic 

panel flutter of thermal insulation panels for space 

applications. Local, pinched boundary conditions 

were considered and 1D CUF proved to be a reliable 

tool to deal with 2D panels. 

 Load Factors and Non-Structural Masses     

The effects of inertial loads have been investigated 

by Carrera et al. (2014e) and Pagani et al. (2014b) by 

means of 1D CUF models. Particular attention was 

paid to thin-walled structures. Local effects and 

couplings due to asymmetric loadings were 

accurately detected, with low computational costs. 

 Rotors and Rotating Blades 1D CUF models 

have been extended to rotor dynamics analyses in 

Carrera and Filippi (2014) and Carrera et al. 

(2013c,i). Coriolis and centrifugal stiffening were 

considered for the free vibration analysis of compact 

and thin-walled rotating structures. Extremely 

accurate frequencies and modal shapes, including 
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shell-like modes, were detected. 1D CUF can be 

seen as a powerful tool for rotor dynamics problems 

since is a simple formulation that offers the 

possibility of obtaining refined models of arbitrary 

accuracy. 

 Biomechanics     Varello and Carrera (2014) have 

proposed 1D CUF models as computationally 

efficient tools to deal with the structural analysis of 

biomechanics structures. In particular, an 

atherosclerotic plaque was considered as a typical 

structure with an arbitrary cross-section geometry 

and was studied for both homogeneous and 

nonhomogeneous material cases using 1D variable 

kinematic models. Comparisons with 3D FEs 

showed that 1D CUF provides remark- able three-

dimensional accuracy in the analysis of even short 

and highly nonhomogeneous structures with an 

arbitrary geometry, and offers a significant reduction 

in computational costs. 

 Multifield Analysis      Multifield models have 
recently been developed on the basis of the 1D 
CUF. Thermo- 

mechanical analyses have been carried out by Giunta 

et al. (2013a,b) via closed-form solutions and 

through the radial basis function method. The 

temperature field was obtained by means of the 

Fourier heat conduction equation and then 

considered as an external load in the mechanical 

analysis. 

Piezo-electric structures have been analysed by 

Giunta et al. (2013c), Koutsawa et al. (2013, 

2014), and Miglioretti et al. (2014). The 

displacement components and the electric potential 

were modeled above the cross-section through 

Lagrange polynomials in a layer-wise sense. 

Assessments against 3D FEs showed the high accuracy 

and the computational efficiency of 1D CUF in a 

multifield analysis scenario. 

 Nanostructures Nano-beams have been analyzed 

through the 1D CUF by Giunta et al. (2013f). Static, 

free vibration and stability analyses were carried out. 

The effects of the cross-section side and of the 

crystallographic plane orientation were investigated. 

The results highlighted the advantages of refined 

beam models over classical ones and proved that 

accurate results can be obtained with reduced 

computational costs 

 Analysis of Aerospace Structures via the 

Component-Wise Approach    A free vibration 

analysis of wings by means of the 1D CUF has been 

conducted by Carrera et al. (2012b). In particular, 

box wings were considered and the results 

highlighted the enhanced capabilities of the present 

formulation to deal with shell-like modes of thin-

walled structures. 

1D CUF has recently been extended to the so-called 

Component-Wise approach (CW). In a CW model, 

each component of a complex structure is modeled 

though 1D CUF models. The use of Lagrange 

polynomials makes the assembling of each 

component straightforward, since it can be 

conducted at the interface level by imposing 

displacement continuity. Furthermore, 1D, 2D and 3D 

structural elements can be modeled through 1D 

models, since the arbitrary rich displacement fields of 

the 1D CUF allow very short and thin-walled beams 

to be dealt with. 

The typical components of aerospace structures are 

ribs, stiffeners and longerons. All these elements can 

be modeled through the 1D CUF. Carrera et al. 

(2013f,g) have exploited the CW to carry out the 

static and free vibration analysis of complex 

aerospace structures. Comparisons with 3D models 

and analytical solutions highlighted the high 

accuracy of the present formulation and its 

computational efficiency. 

 Analysis of Civil Structures via the 

Component-Wise Approach 1D CUF has been 

exploited for the static and free vibration analysis of 

bridge-like structures in Carrera et al. (2012e) and 

Petrolo et al. (2012). Particular attention was paid to 

the end-effects and a comprehensive analysis of the 

shear correction factors was carried out. 1D CUF 

models were able to detect 3D stress fields along 

bridge-like structures. Furthermore, it was shown 

that the use of refined models makes the adoption of 

shear correction factors unnecessary. 

CW has been applied to civil structures by Carrera 

and Pagani (2014a) and Carrera et al. (2014d). In 

these papers, 1D CUF was exploited to model 

complex structures such as industrial and civil 

buildings. 3D stress states and local vibration modes 

were accurately detected with very low 

computational costs. 

 Component-Wise Approach for the Multiscale 

Analyses of Composites CW can be considered as a 

mul- tiscale approach for composite structures. In 

fact, CW can be used to model different scale 

components - layers, fibers and matrices - by 

accounting for their material characteristics and with 

no need for coupling techniques. In other words, no 

homogenization techniques are needed for the 

material properties and the different scale models 

can be straightfor- wardly assembled since only 1D 

FEs are employed. Refined models at the microscale 

level can be employed solely where required, for 

instance where failure can occur, whereas 

macroscale models can be used elsewhere. Carrera et 

al. (2012c, 2013a) have applied CW to the analysis 

of composite structures and, in particular, have 

computed failure indexes with 3D-like accuracy and 

about 100 times fewer DOFs than 3D solid elements. 
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Fig. 5 Differences between Euler-Bernoulli (a) and Timoshenko (b) beam theories. 

 
 

3. Classical theories, variable kinematic assumptions and Taylor expansion CUF theories 

 
A number of refined beam theories have been 

proposed over the years to overcome the limitations 

of classical beam models, as already mentioned in the 

previous sections. According to the rectangular 

cartesian coordinate system shown in Fig. 2, and 

considering a beam under bending on the xy-plane, 

the kinematic field of EBBT can be written as: 

ux = ux1 

ux = u 1 − x 
∂ux1

 
(16) 

 

where ux and uy are the displacement components of a 

point belonging to the beam domain along x and y, 

respectively. 

ux1 and u 1 are the displacements of the beam axis, 

whereas − 
∂ux1 

is the rotation of the cross-section 

about the z-axis 

(i.e. ϕz) as shown in Fig. 5a. According to EBBT, 

the deformed cross-section remains plane and 

orthogonal to the beam axis. EBBT neglects the 

cross-sectional shear deformation phenomena. 

Generally, shear stresses play an important role in 

several problems (e.g. short beams, composite 

structures) and their neglect can lead to incorrect 

results. One may want to generalize Eq. (16) and 

overcome the EBBT assumption of the orthogonality 

of the cross-section. The improved displacement field 

results in the TBT, 

ux 

= 
ux1 

uy 
= 
uy1 

+ x 

ϕz 

(17) 

TBT constitutes an improvement over EBBT since the 

cross-section does not necessarily remain perpendicular 

to the beam axis after deformation and one degree of 

freedom (i.e. the unknown rotation ϕz) is added to the 

original displacement field (see Fig. 5b). 

Classical beam models yield reasonably good results 

when slender, solid section, homogeneous structures 

are subjected to bending. Conversely, the analysis of 

deep, thin-walled, open section beams may require 

more sophisticated theories to achieve sufficiently 

accurate results, see Novozhilov (1961). One of the 

main problems of TBT is that the homogeneous 

conditions of the transverse stress components at the 

top/bottom surfaces of the beam are not fulfilled, as 

shown in Fig. 3. 
One can impose, for instance, Eq. (17) in order to have 
null transverse strain components (γxy = ∂ux   + ∂uy 

) at x 
= ± b . 

 

∂
y

∂
x

2 

This leads to the third-order displacement field known as 
the Reddy-Vlasov beam theory (Vlasov, 1961), 

ux = ux1 

u  = u  + f (x) ϕ + g (x) 
∂ux1

 (18) 
y y1 1 z 1 ∂y 

 x z 
z 

  x1 

∂y 

∂u 

u 
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y 1 

where f1(x) and g1(x) are cubic functions of the x 

coordinate. It should be noted that although the 

model of Eq. (18) has the same number of DOFs of 

TBT, it overcomes classical beam theory limitations 

by foreseeing a quadratic distribution of transverse 

stresses on the cross-section of the beam. 

The above theories are not able to include any 

kinematics resulting from the application of torsional 

moments. The simplest way to include torsion 

consists of considering a rigid rotation of the cross-

section around the y-axis (i.e. ϕy), see

z  

(19) 

 

 

 

 

 

where uz is the displacement component along the z-

axis. According to Eq. (19), a linear distribution of 

transverse displacement components is needed to 

detect the rigid rotation of the cross-section about 

the beam axis. Beam models that include all the 

capabilities discussed so far can be obtained by 

summing all these contributions. By considering the 

deformations also in the yz-plane, one has 

ux = ux1 + z ϕy 

 

u = u 

 

+ f (x) ϕ y1 
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+ f (z) ϕ + g (x) 

( 
∂ux1 + z 

ϕy 
) 

+ g (z) 

( 
∂uz1 

− x 
ϕy 

)

 z 
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1 
∂y ∂y 

2 
∂y ∂y 

 (20) 

uz = uz1 − x ϕy 

where f1(x), g1(x), f2(z), and g2(z) are cubic functions. 

These beam models are not able to account for many 

higher-order effects, such as the second-order in-

plane deformations of the cross-section. 

As discussed in the previous sections, many refined 

beam theories have been proposed over the last 

century to overcome the limitations of classical beam 

modelling. However, as a general guideline, one can 

state that the richer the kinematic field, the more 

accurate the 1D model becomes (Washizu, 1968). 

However, richer displacement fields lead to a higher 

amount of equations to be solved and, moreover, the 

choice of the additional expansion terms is generally 

problem dependent. 

The CUF can be considered as a tool to tackle the 

problem of the choice of the expansion terms. In the 

CUF framework, the displacement field is described 

through Eq. (13) and, according to it, Eq.s (16) to (20) 

consist of MacLaurin expansions that uses 2D 

polynomials x
i
 z 

j
 as base functions, where i and j are 

positive integers. This class of models is referred to 

as TE (Taylor-Expansion). It should be noted that 

Eq.s (16), (17), and (19) are particular cases of the 

linear (N = 1) TE model, which can be expressed as 

ux = ux1  + x ux2  + z ux3 

 uy = uy1 + x uy2 + z uy3 uz = uz1  + x uz2  + z uz3 

 
(21) 

where the parameters on the right-hand side (ux1 , uy1 , 

uz1 , ux2 , etc.) are the displacements of the beam axis and 

their first derivatives. Higher-order terms can be 

taken into account according to Eq.(13). For 

instance, the displacement fields of Eq.s (18) and 

(20) can be considered as particular cases of the 

third-order (N = 3) TE model, 

ux = ux1 + x ux2 + z ux3  + x2
 ux4  + xz 

ux5  + z2
 ux6  + x3

 ux7  + x2
z ux8  + xz

2
 ux9  

+ z3
 ux10 
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uy = uy1 + x uy2 + z uy3 + x2
 uy4 + xz uy5 + z2

 uy6  + x3
 uy7  + x2

z uy8  + xz
2
 uy9  + z3

 uy10 uz = uz1 + x uz2 + z uz3 + 

x
2
 uz4 + xz uz5 + z2

 uz6 + x3
 uz7 + x2

z uz8 + xz
2
 uz9 + z3

 uz10 

The possibility of dealing with any-order 

expansion makes the TE CUF able to handle 

arbitrary geometries, thin-walled structures 

and local effects as it has been shown for 

both static (Carrera et al., 2010b, 2012e) and 

free vibration analyses (Carrera et al., 

2012b; Pagani et al., 2013; Petrolo et al., 

2012). 

 

4. Use of local frame and Lagrange expansion CUF theories 

 
TE model unknowns are displacements and N-order derivatives of the displacement field. These variables are usually 

defined along the axis of the beam. The unknown variables become pure displacements if Lagrange polynomials are 
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Fig. 7 Cross-sectional Lagrange polynomial sets. 
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Fig. 8 Two assembled L9 elements in actual geometry. 

 
adopted as expansion functions (Fτ) in Eq. (13). The 

resulting models are referred to as LE (Lagrange-

Expansion) models in the framework of the CUF. LE 

models were introduced in recent works by the first 

author and his co-workers (Carrera and Petrolo, 

2012a; Carrera et al., 2012a). Different Lagrange 

polynomials were used to interpolate the 

displacement field over the beam cross-section and 

they are shown in Fig. 7. Three- (L3), four- (L4) and 

nine-point (L9) polynomials were formulated which 

lead to linear, quasi-linear (bilinear), and quadratic 

kinematics, respectively. The isoparametric 

formulation was exploited to deal with arbitrary 

shaped geometries. The Lagrange polynomial 

expansions can be found in (Oñate, 2009). For 

instance, the interpolation functions in the case of an 

L4 element are the following ones: 

Fτ = 
1 

(1 + r 

rτ)(1 + s sτ) τ = 1, 2, 3, 4 (23) 
4 

where r and s vary from −1 to +1, and rτ and sτ are 

the coordinates in the natural plane of the four points 
whose location are shown in Fig. 7b. According to 
the CUF, the displacement field given by an L4 

element is 

ux = F1 ux1 + F2 ux2 + F3 ux3  + F4 ux4 

uy = F1 uy1 + 

F2 uy2 + F3 uy3 

+ F4 uy4 uz = 

F1 uz1 + F2 uz2 

+ F3 uz3 + F4 

uz4 

(24) 
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where ux1 , ..., uz4 are the displacement variables of 

the problem and represent the translational 

displacement components of each of the four points of 

the L4 element. For further refinements, the cross-

section can be discretized by using several L-

elements as in Fig. 8, where two assembled L9 

elements are shown. Moreover, via LE, FE 

mathematical models can be built by using only 

physical boundaries; artificial lines (beam axes) and 

surfaces (plate/shell reference surfaces) are no longer 

necessary. Figure 9 shows the physical 

volume/surface approach of the present modelling 

technique in which a 3D geometry can be accurately 

modeled via LE since the problem unknowns can be 

spread above the physical surfaces of the structure. 

This capability can be extremely powerful in a 

CAD-FEM coupling scenario, for instance in an 

optimization problem, since the 3D CAD geometry 

can be straightforwardly exploited to build the FE 

model. 

 

5. Component-Wise approach for complex 

sections by LE and TE 

 
Most of the engineering structures are 

composed of different components, such as stringers, 

panels and ribs in the case of aerospace structures, or 

columns, girders and walls in the case of typical civil 

constructions. However, these components usually 

have different geometries and scales. In recent 

works, the component-wise (CW) approach has been 

introduced in the framework of the CUF. The CW 

approach allows each typical component of a 

structure to be modeled 

 

 
3D Geometry from CAD 

 
 
 
 

LE Modeling 
 
 

Beam element 
 

Beam node 

Lagrange node above the first beam 
node cross-section 

Lagrange node above the second beam 
node cross-section 

DOFs: pure displacements of each Lagrange 
node (3 DOFs per Lagrange node) 

 
 

Lagrange nodes can be placed above 
the physical surface of the structure 

 
 
Computational Model 
 

Fig. 9 The physical volume/surface approach of LE. 

 



 

2 
  

17 

 

 

through the 1D CUF formulation. In a FE 

framework, this means that different components are 

modelled by means of the same 1D FE, i.e. the same 

stiffness matrix is used for each component. Figure 

10 shows two examples of CW applications to 

aerospace and composite structures, respectively. 

The CW methodology favors the tuning of the model 

capabilities by 

(1) choosing which component requires a more 

detailed model; (2) setting the order of the structural 

model to be used. Static and dynamic analyses of 

reinforced-shell wing structures (Carrera et al., 

2013f,g) as well as civil engineering framed 

constructions (Carrera and Pagani, 2014a; Carrera et 

al., 2014d) by 1D CW models have been carried out 

and the results have revealed the strength of this class 

of models in dealing with complex geometries, 

localized boundary conditions and 3D accuracy with 

very low computational costs. 

The CW has been recently exploited for the analysis 

of composite structures in Carrera et al. (2012c, 

2013a). In particular, failure index distributions were 

computed and compared with 3D solid FEs. The CW 

for composite structures can be seen as a 

computationally cheap multiscale approach, in 

particular 

• Macroscale components, e.g. layers, and 

microscale components, e.g. fibers, can be 

simultaneously modeled 

through the same 1D formulation. Coupling techniques 

to deal with different scales are not required. 

• Each component can be modeled with its 
material characteristics, in other words, no 

homogenization techniques are necessary. 

• The adoption of the same type of 1D FEs 
allow highly accurate modelings to be used only 

where needed, e.g. in proximity of failure zones, 
whereas lower fidelity modelings can be used 
elsewhere. 

• The adoption of 1D FEs makes the 

computational costs of the CW approach 10-100 
times lower than solid ele- ments. 

An example of CW utilization as a multiscale 

approach is shown in Fig. 11 in which the shear 

stress above a composite aeronautical longeron is 

considered (Carrera et al., 2012c). The top flange 

fibers and matrix were CW modeled, whereas, 

elsewhere, the modeling was at the layer level. 

 

6. Benchmarks and results for static, dynamic, 

and aeroelastic problems 

 
This section deals with numerical results for a 

number structural problems; including statics, 

dynamics and aeroe- lasticity. Furthermore, CW 

examples are provided, and the enhanced capabilities 

of the CUF beam are shown via the analysis of 

typical shell problems by means of beam elements 

 
 

Reinforced shell structure 
 
Component-wise approach 

1D L-elements 
Assembled cross-section 
 

   
 

 

 

 

(a) A reinforced shell structure for aerospace applica- tions 

(b) A fiber reinforced composite structure 
Fig. 10 CW modeling of multi-component structures. 

 

 

Fig. 11 CW as a multiscale approach 

Only one fiber-matrix cell is 
embedded in the CW model 

The middle layer, the fibers and 
matrix of the top and bottom 

layers are the components of 

the CW approach 

The three layers of the structure 

are the components of the CW 

The top and middle layers, the 
fibers and matrix of the bottom 

layer are the components of the 

CW approach 



 

2 
  

18 

 

 

 

  
 
 

 
Y 

 
 
 
 

 
h 

 
 
 

 
Fig. 12 Three-stringer spar cross-section. 

 
       

       

       

       

       

       

 

 
Fig. 13   Three-stringer spar cross-section, axial stress at x = y = 0. 

 
 Benchmarks and results for static problems 

The static analysis of an aeronautical longeron 

is considered in this section. The geometry of the 

structure is shown in Fig. 12, the longeron has three 

longitudinal stiffeners. The structure was clamped 

at y = 0, whereas a point load, Fz = −1 × 10
4
 N, 

was applied at the center of the upper stringer at y = L. 

The geometrical characteristics were as follows: axial 

length, L = 3 m; cross-section height, h = 1 m; 

area of the stringers, As = 1.6 × 10−3
 m

2
; sheet 

panel thickness, t = 2 × 10−3
 m; distance from the 

intermediate stringer to the x-y plane, b = 0.18 m. 

The material data are: the Young modulus, E = 75 

GPa; Poisson ratio, ν= 0.33. 

Five different structural models were considered: 

EBBT (93 DOFs), TBT (155 DOFs), an N = 8 beam 

model (4185 DOFs), an LE beam model with 5 

cross-sectional elements (3813 DOFs) and a solid 

element model (72450 DOFs). 

Figures 13 and 14 show stress distributions above 

the cross-section of the beam. LEs provide the most 

accurate distri- butions with respect to the solid 

elements with 20 times fewer DOFs. More details 

and results on the static analysis of aeronautical 

structures can be found in Carrera et al. (2013f). 
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Fig. 14   Three-stringer spar cross-section, shear stress at x = 0, y = L/2. 

z 
t 

A 
 
 
 

D y 
B x 

 
 

 

C 

d 
 

Fig. 15 Thin-walled circular cross-section. 

 

Table 1 Displacements (mm) of the loading points A and D for different models at t = 0 s (Carrera and Varello, 

2012). 

 

 

 

 

 

 

 

 

 

−23.4628 − −9.8840 − 250000   

 

 Benchmarks and results for structural dynamics 

The dynamic response analysis of a thin-walled 

structure is presented in this section; these results 

can be found in Carrera and Varello (2012) together 

with more comprehensive analyses on deep and thin-

walled structures. A clamped- clamped cylinder 

(Fig. 15) was considered (the outer diameter d is 

equal to 0.1 m, the thickness is equal to 0.001 m and 

the span-to-diameter ratio (L/d) is equal to 10). Four 

points were considered over the mid-span cross-

section where four concentrated forces were applied 

as time-dependent sinusoids with amplitude Pz0 = 

10000 N and a phase shift, 

PzA (t) = Pz0 sin (ω t + ϕA) ϕA = 0 

PxB (t) = Pz0 sin (ω t + 
ϕB) ϕB = 30 

PzC (t) = − Pz0 sin (ω t 

+ ϕC) ϕC = 60 

PxD (t) = − Pz0 sin (ω t 

+ ϕD) ϕD = 90 

(25) 

Model uxD Error uxD uzA Error uzA DOFs 

EBBT 

TBT 

N = 1 

−0.9906 

−1.1453 

−2.0937 

−95.78 % 

−95.12 % 

−91.08 % 

−1.7157 

−1.9838 

−1.4362 

−82.64 % 

−79.93 % 

−85.47 % 

93 

155 

271 

N = 3 
N = 4 

N = 7 

N = 10 

N = 14 
  NASTRAN  

−2.9313 
−5.9690 

−15.7213 

−19.7523 

−21.1939 

−87.51 % 
−74.56 % 

−32.99 % 

−15.81 % 

−9.67 % 

−3.5311 
−6.8900 

−9.3591 

−9.7314 

−9.8418 

−64.27 % 
−30.29 % 

−5.31 % 

−1.54 % 

−0.43 % 

930 
1395 

3348 

6138 

11160 
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ion 

where the angular frequency is ω = 100 rad s−1
 and 

the the time interval [0, 0.025] s. Table 1 shows the 

displacements of two points at t = 0 s. The 

configuration at the final time instant t = 0.025 s is 

shown in Fig. 16 (mid-span cross-section). N = 4 is 

unable to detect any local effect near the loading 

points; it only detects a global deflection of the 

circular section. On the contrary, with N = 7 and N = 

10, the proposed 1D model perfectly detects the 

local deformations typical of a shell-like behavior. 

 
 Application to aeroelasticity 

The 1D CUF model enhanced capabilities for 

aeroelastic analyses are presented in this section. Static 

aeroelasticity, flutter and panel flutter problems are dealt 

with. 

• Static Aeroelasticity of Wings A metallic 

straight wing model was considered (E = 69 

GPa, ν = 0.33, V∞ 
= 30 m/s) as in Fig. 17. The aerodynamic loads were 

iteratively computed through a 3D panel method 

(Varello et al., 2013). Figure 18 shows the deformed 

cross-section via different beam models. Expansion 

orders higher than the tenth are needed to accurately 

detect the in-plane distortion of the cross-section. 

The N = 14 model had 11160 DOFs. In Varello et al. 

(2013), more details including a comprehensive 

comparison with solid elements can be found.  

 

Fig. 16   Deformation of the mid-span circular cross-section, t = 0.025s.  

 

Fig. 17 Wing model for the static aeroelastic analysis, NACA 2415 airfoil cross-section. 
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Fig. 18   Aeroelastic deformation of the airfoil cross-section at y = 4 m via different beam models, V∞ = 30 m/s. Table 2 Flutter 

velocities and frequencies for different sweep angles via different beam models (Pagani et al., 2014a). 
 

 

 

 

 

 
 

Fig. 19 Geometry and boundary conditions of the panel. 
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• Flutter Analysis of Lifting Surfaces An 

isotropic wing modeled as a flat plate was considered 

whose charac- teristics are the following: length (L) 

equal to 0.305 m, chord (c) equal to 0.076 m and 

thickness (t) equal to 0.001 m. An aluminum alloy 

was employed (E = 73.8 GPa, G = 27.6 GPa and ρ = 

2768 Kg/m
3
). The structural analysis was carried put 

through the DSM, the DLM was employed to 

compute the unsteady aerodynamics and the g-

method to compute the flutter conditions. 

Table 2 shows the flutter conditions against the 

sweep angle (positive angles indicate backward 

wings). The results from classical (EBBT and TBT) 

and N = 1 models were not reported since these 

models are not able to detect flutter condi- tions with 

torsional/bending couplings. At least a third-order 

beam model (N = 3) is required to detect accurate 

flutter conditions as also shown with detailed 

comparisons with plate models in Petrolo (2012, 

2013). 

• Panel flutter The 1D model based on CUF 

was used to carry out the panel flutter analysis of a 

square panel pinched at the corners, see Fig. 19. The 

aeroelastic forces were described by means of the 

piston theory (Ashley and Zartarian, 1956). The 

piston theory is a linear model that provides accurate 

results in supersonic speed regimes. The panel has a 

dimension a equal to 0.5 m, a thickness of 0.002 m 

and it is made of an aluminium alloy with Young‟s 

modulus E equal to 73 GPa, Poisson‟s ratio ν equal 

to 0.3, and density ρ equal to 2700 Kg/m
3
. The use of 

LE allows non- conventional constraint for a beam to 

be straightforwardly introduced. In this case, all the 

corner points were clamped. Fig. 20 shows the 

evolution of the natural frequencies and of the 

damping at an altitude of 20000 m for Mach 

numbers ranging from 1.5 to 10. The results are 

compared with those from a classical two-

dimensional model. The accuracy of the results is 

due to the accuracy of the structural model which is 

able to predict the dynamic behaviour of the panel as 

shown in Figure 21, in which the models involved in 

the instability are depicted and the natural frequency 

are given. 

 
 Application to component-wise analysis 

In this section, applications of 1D CUF models 

to the analysis of complex structures via the CW 

approach are presented. These results can be found in 

Carrera and Pagani (2014a) in which the free 

vibration analysis of civil structures was carried out. 

The free vibrations of the structure shown in Fig. 22 

were investigated. The main dimensions of the 

typical portal frame construction for industrial 

buildings are given in Table 3. Columns and frames 

had square sections with side t = 0.2 m. The 

thickness of the roof was also equal to t. The whole 

structure was made of a steel alloy with E = 210 

GPa, ν = 0.28, and ρ = 7.85 × 10
3
 Kg/m

3
. The 

four vertical columns were clamped to the ground as 

shown in Fig. 22. The first five natural frequencies 

are given in Table 4 and both CW and MSC Nastran 

models are considered. The results by the CW 

approach were compared to 3D solid and 1D/2D 

MSC Nastran models. In the 3D solid model, MSC 

Nastran CHEXA 8-node elements were used. The 

1D/2D MSC Nastran model was built by using 2-

node CBAR elements for columns and frames and 4-

node CQUAD4 elements for the roof. Global modes 

(i.e. bending and torsional) as well as local modes are 

clearly detected by the CW model as it is shown in 

Fig. 23. 
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Fig. 20 Evolution of the frequencies and the aerodynamic damping at different Mach number, the results are 

compared with those from a classical 2D model. 

 

 

 

 

 

(a) Mode 1, 19.16 Hz (b) Mode 2, 38.90 Hz (c) Mode 3, 40.31 Hz 

Fig. 21 First three modes of the panel and natural frequencies, LE beam models. 
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Fig. 22 Industrial building. 

 

 

Table 3 Main dimensions of the portal frame industrial construction. 
 

  Dimensions, m   

Length, L 14.00 

Width, w 13.80 

h1 7.00 

h2 3.00 

c 4.50 
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Table 4 Natural frequencies (Hz) of the industrial building. For each structural model, the number of DOFs is 

reported in brackets. (Carrera and Pagani, 2014a) 
 

CW Nastran 1D/2D  Nastran 3D 

  (6399) (2836) (143121)  
Mode 1

b
 0.42 0.49 0.50 

Mode 2
t
 0.80 0.84 0.87 

Mode 3
r
 4.10 4.25 4.32 

Mode 4
r
 10.60 10.68 10.88 

Mode 5
r
 10.34 11.37 11.53 

b : Bending on plane yz; t : Torsional along y; r : Local roof mode 

 
 

(a) CW model (4.10 Hz)  (b) NAS3D model (4.25 Hz) (c) NAS1D&2D model (4.32 Hz) 

Fig. 23 Third modal shape of the industrial building. 

 Refined beams for shell-like structure analysis 

Refined beam models can be exploited to deal with typical shell problems, such as the pinched shell problem that 

was first proposed by Flügge (1960), see Fig.  24 and Table 5.  These results can be found in Carrera et al. (2014b) in 

which a number of typical shell problems were dealt with by means of advanced beam and shell models. 

LEs were employed and, due to the symmetry of the problem, one-eight of the cylinder was modeled. Two different 

L-element distributions were used. In the first configuration, 29 L9 elements were considered and a uniform mesh above 

the cross-section was adopted. In the second configuration, 30 L16 elements were adopted and the element distribution 

above the cross-section was linearly refined in proximity to the loading point. 

Tables 6 and 7 present the transverse displacement of the loading point for the simply-supported and the clamped-clamped 

case, respectively. Figure 25 shows the deformed top-half cross-section at L/2 and the distribution of the transverse 

displacement. There is a perfect match between the 1D and the 2D models. The present 1D formulation is able to detect 

very complex 3D deformed configurations of thin-walled structures undergoing point loads with computational costs 

comparable to those of shell models. 

 

7. Asymptotic/Axiomatic evaluation of beam models and the Best Theory Diagram 

 
Structural models are based on a given number of unknown variables, or degrees of freedom. In the displacement 

approach, the unknown variables are generalized displacement components. The contribution of each variable varies 

depending on the structural problem and, in general, some variables can be more important than others in predicting the 

mechanical behavior of a structure. Moreover, some terms might not have any influence, since their absence does not 

corrupt the accuracy of the solution. 

The development of a structural model can be seen as a process that aims to the definition of the minimum number of 
 
 

Fig. 24 Pinched shell. 
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Table 5   Pinched shell physical data. 
 

Young‟s modulus E 3    10
6
   psi 

Poisson‟s ratio ν 0.3 

Load P 1 lb 

Length L 600 in 

Radius R 300 in 

Thickness t 3 in 

 

 

 

 
 

Table 6 Simply-supported pinched shell, transversal displacement, uz, at the loading point (midsurface) (Carrera 

et al., 2014b). 
 

Model uz×10
5
, in 

2D shell 

DOFs 

ESL3 1.8427 8748 

1D LE  

29 L9 1.7959 5310 

30 L16 1.8359 10920 

 

 

 

 

 
Table 7 Clamped-clamped pinched shell, transversal displacement, uz, at the loading point (midsurface) (Carrera 

et al., 2014b). 
 

Model uz×10
5
, in 

2D shell 

DOFs 

ESL3 1.5279 8748 
 1D LE  

30 L16 1.5196 10920 
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Fig. 25 Simply-supported pinched shell, comparisons between beam and shell solutions at the midspan section. 
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Fig. 26 The Best Theory Diagram. 

 

unknown variables that is necessary to obtain 

accurate results for a given structural problem. The 

TBT, for instance, is based on 5 unknown variables 

and it gives satisfactory results for moderately short 

beams under bending loads. The TBT, in particular, 

has 3 constant terms and 2 linear terms along the 

axis of the beam. As soon as, for instance, torsion 

has to be dealt with, a number of additional 

unknown variables must be accounted for; e.g. linear 

in-plane terms, and parabolic or cubic out-of-plane 

terms may be needed. The choice of such additional 

variables can be based on the intuition of scientists 

(axiomatic method), or on the asymptotic 

investigation of the influence of a variable against a 

number of structural parameters such as the 

thickness (asymptotic method). 

In the CUF framework for beams, plates and shells, 

the so called Mixed Axiomatic-Asymptotic 

Approach (MAAA) has been recently developed to 

investigate the influence of each variable of a refined 

structural theory, and to build reduced refined 

theories which have the same accuracies as full 

expansion models but fewer unknown variables and 

to obtain the best theory diagram (BTD), where the 

accuracy of a model can be evaluated against the 

number of variables (Carrera and Petrolo, 2010, 

2011). The choice of the name is due to the fact that 

MAAA is capable of obtaining asymptotic-like 

results, starting from axiomatic-like hypothesis. The 

influence of a variable can in fact be investigated 

against the variation of various parameters (e.g. 

thickness, boundary conditions, etc.), by using the 

MAAA and this analysis is conducted starting from 

axiomatic-like hypotheses. The smallest number of 

variables required to fulfill a given accuracy 

requirement can thus be determined. The basic 

MAAA can be briefly described as follows: 

( 1 )   CUF is 

used to 

generate the 

governing 

equations for 

the considered 

theories. ( 2 ) 

A theory is 

fixed and used 

to establish the 

accuracy 

( 3 ) Each variable is deactivated in turn and the 

effects of its deactivation are evaluated; if no effects 

are observed, the variable is discarded. 

( 4 ) The displacement model with the smallest 

number of terms is then detected for a given 

structural lay-out and a give set of output quantities. 

The reduced models can be obtained by opportunely 

rearranging the rows and columns of the FE matrices 

or through penalty techniques. 

The ultimate outcome that stems form a systematic 

MAAA analysis is the Best Theory Diagram (see Fig. 

26) in which the computational cost of a structural 

model, i.e. the number of terms of a structural model, 

is given against its accuracy. The BTD allows one to 

build a structural model in order to use fewer terms 

for a given error (vertical shift, ∆N ), or to increase the 

accuracy while keeping the computational costs 

constant (horizontal shift, ∆ERROR). The plot generally 

appears as a hyperbola. 

An advanced version of the MAAA has been 

recently developed (Carrera and Miglioretti, 2012) in 

which genetic algo- rithms were employed to avoid 

the cumbersome evaluation of all the possible 

theories that can be obtained out of a given set of 

variables. MAAA takes advantage of a graphic 
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   ▲ ▲ △ ▲ △ ▲ △ △ △ △ △ △ △ △ ▲  

notation to improve the readability of the results. On the basis of 

Table 8    Symbolic representation of the reduced kinematic model with uy3   deactivated. 
 

▲ ▲ ▲ ▲ ▲ ▲ 
 

▲ ▲ △ ▲ ▲ ▲ 
 

▲ ▲ ▲ ▲ ▲ ▲ 

Table 9 Reduced models for the modal analysis of a cantilever C-shaped cross-section beam. 
 

1
st
 bending z, Me f f /M = 20/45 

   △ △ ▲ △ ▲ △ △ ▲ △ ▲ △ ▲ △ ▲ △   

   △ △ ▲ △ ▲ △ △ ▲ △ ▲ △ ▲ △ ▲ △   

   ▲ ▲ △ ▲ △ ▲ ▲ △ ▲ △ ▲ △ ▲ △ △   

1
st
 bending x, Me f f /M = 17/45 

 

   ▲ ▲ △ ▲ △ ▲ ▲ △ △ △ ▲ △ ▲ △ ▲  

   △ △ ▲ △ ▲ △ △ △ △ ▲ △ △ △ ▲ △   

1
st
 torsional, Me f f /M = 19/45 

   △ △ ▲ △ ▲ △ △ ▲ △ ▲ △ ▲ △ ▲ △   

   △ △ ▲ △ ▲ △ △ ▲ △ ▲ △ ▲ △ ▲ △   

   ▲ ▲ △ ▲ △ ▲ ▲ △ ▲ △ ▲ △ △ △ △   

 

the adopted notation, the 1D model given in Table 8 refers to the following cross-section displacement field: 
 

ux = ux1 + x ux2 + z ux3  + x2
 ux4  + xz ux5  + z2

 ux6 uy = uy1  + x uy2  

+ +x
2
 uy4 + xz uy5 + z2

 uy6 uz = uz1 + x uz2 + 

z uz3 + x2
 uz4 + xz uz5 + z2

 uz6 

Reduced 1D models for the modal analysis of beams with 

various cross-sections are reported hereafter as in Carrera 

et al. (2012d). A C-shaped beam was considered and three 

natural modes were investigated, the first bending mode 

along the z-direction (Bending z), the first bending mode 

along the x-direction (Bending x) and the first torsional 

mode. Table 9 shows the reduced models. For instance, 

the reduced model that is able to detect the first torsional 

mode as accurately as a full N = 4 mode is the following: 

ux = z ux3 + xz ux5 + x2
z ux8  + z3

 ux10  + x3
z ux12  + xz

3
 ux14 

uy = z uy3 + xz uy5 + x2
z 

uy8 + z3
 uy10 + x3

z uy12 + 

xz
3
 uy14 uz = uz1 + x2

 uz4 + 

z
2
 uz6 + x3

 uz7 + xz
2
 uz9 + 

x
4
 uz10 

Such reduced models are influenced by the problem 

characteristics to a great extent, that is, as one 

parameter changes (e.g. a different geometry, 

boundary condition or material), different variables are 

required. 

 

8. Conclusion 

 
This paper presents a review of the most 

important techniques for the development of 

advanced beam models. The following six main 

techniques have been considered: the introduction of 

shear correction factors, the development of warping 

functions, Saint-Venant based solutions and 

decomposition methods, variational asymptotic 

methods, the Gen- eralized Beam Theory and the 

Carrera Unified Formulation. The theoretical 

foundations of each technique have been outlined 

briefly. Particular attention has been paid to the CUF 

and a comprehensive description of its advanced 

capabili- ties has been given via a number of 

numerical examples. Furthermore, novel techniques 

that have stemmed from the CUF, the mixed 

axiomatic/asymptotic approach and the component-

wise approach, have been outlined. 

The present review proves the great interest in the 
development of advanced beam theories since beams are 
computation- 

ally more efficient than 2D and 3D models and can 

lower the computational costs to a great extent in 

many cumbersome structural analyses, such as fluid-

structure interaction problems, multiscale 

applications, non-linear and dynamic response 

analyses. 

The most evident difficulties and limitations that 

have to be dealt with in the development of an 

advanced beam model are: 

• Beam models are usually problem dependent, 

that is, it is difficult to develop models that can 

deal with arbitrary 

geometries, boundary conditions and material 

characteristics. 

• Beam models introduce fictitious lines or 

surfaces on which the problem unknowns lie. This 
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aspect makes a detailed 3D modeling of a structure 

difficult, not to say impossible. Furthermore, 

coupling with CAD models can be troublesome and 

lengthy. 

• Beam models often introduces 

approximations at the material level. In fact, 
homogenized material characteristics are more often 
than not employed and reduced constitutive 

equations are implemented. 

1D CUF models are particularly advantageous since 

they are not affected by the aforementioned issues and in 

particular 

• CUF models can deal with arbitrary geometries, 

boundary conditions and materials. 

• 1D CUF models lead to the component-wise 

description of a structure. This means that, 

although a 1D formulation 

is employed and its computational advantages are 

preserved, a complete and accurate 3D modeling of 

the geometrical and material characteristics can be 

obtained. 

• 1D CUF models do not require homogenization 

techniques, since the real material 

characteristics of whatsoever 

structural component can be employed. This aspect can 

be of fundamental importance in many applications, 

such as the failure analysis of composites. 

Future developments should be aimed at the application 

of 1D models to very cumbersome structural problems, 

such as those in biomechanics, wave propagations, 

multiscale analyses and fluid-structure interactions. 
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