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Abstract— 
Understanding mobile data consumption patterns is crucial for learning about urban ecosystem and human activity. This task is 

challenging in the sense that complexity of mobile data usage in vast metropolitan environments, the disruption of unusual events, and 

the absence of prior understanding of urban traffic patterns are the three problems. We suggest a fresh method for creating a strong 

system that consists of three subsystems: time series decomposition of mobile traffic data, pattern extraction from various elements of the 

original traffic, and anomalous event detection from noises. 

Three significant findings come from our examination into the mobile traffic data of 6,400 cell towers in Shanghai. 

First, we find five daily patterns among the 6,400 cellular towers that correlate to various human daily activity patterns. 

 

Introduction  
 
Massive amounts of mobile traffic data are used as 

a result of the widespread availability of LTE and 

4G networks. In the last ten years, the amount of 

mobile data traffic has increased by 4,000 times, 

and our society is currently dealing with a 

remarkable acceleration in the expansion of cellular 

data traffic. In 2015, there were 3.7 exabytes of 

monthly mobile data traffic, and by 2020, that 

number is predicted to rise to 30.6 exabytes. As a 

result, studying mobile cellular traffic becomes a 

crucial method for comprehending human 

behaviour and urban environment. However, our 

understanding of how people's routine activities 

and unplanned occurrences impact the mobile 

traffic of cellular towers is relatively restricted [2]. 

Such information is quite important. 

Determine the placements of the cellular towers 

based on traffic patterns and apply suitable tactics 

for the towers of various patterns to reduce traffic 

loads during peak hours. In 

Additionally, if a technique can be created to 

precisely identify abnormalities in cellular traffic 

data, it will assist ISP in identifying equipment 

failures or unexpected crowd occurrences so that 

they may take appropriate action to minimise 

possible loss. Fundamentally, accurately 

recognising mobile traffic patterns is crucial for 

comprehending human behaviour, which may be 

used to improve infrastructure and living 

conditions. 

An appropriate dataset for analysing urban people 

activity is cellular network record. Today's mobile 

lifestyle frequently involves using a cellular 

network to access the internet. In our metropolitan 

lives, we constantly use cellphone data to check out 

in. Using smartphone applications to access stores, 

hail a cab using taxi hailing services, connect with 

pals on social media, etc. Call description records 

(CDRs), which are more detailed, 

Due to the increasing frequency of access, mobile 

traffic data records are also frequently employed to 

reveal human life patterns in cities. In contrast, 

there is only 200–300 m between two nearby 

cellular towers in metropolitan areas, so mobile 

traffic data likewise offers high spatial granularity. 

Another significant data source that is frequently 

generated in metropolitan areas is social media data

. 
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Social media data are difficult to gather and exploit 

due to the variety of platforms and formats. For 

instance, when a route is busy, the nearby cellular 

towers' mobile traffic increases. 

Three factors make it difficult to identify the traffic 

patterns of large-scale cellular towers. The first 

reason why the traffic around cellular towers is 

complicated is because 

Towers vary greatly from one another. 

Furthermore, even the traffic from a single cell 

tower exhibits various patterns over a range of time

 periods. Finding a method that can examine it 

universally is challenging because of this. 

However, we must discover a way to describe these 

variations and create a model that can take into 

account varied contexts. Second, unintentional 

incidents have an impact on the traffic at cellular 

towers, which further complicates analysis by 

adding complication. For instance, a cellular 

tower's traffic volume will increase suddenly and 

depart substantially from its usual patterns when a 

parade happens surrounding it. 

It is so challenging to figure out how to reduce the 

impact of these unintentional occurrences on 

pattern analysis and to identify anomalous events. 

Thirdly, it is challenging to choose the right 

number of patterns and to recognise their 

significance since we have limited prior knowledge 

about the traffic patterns of cellular towers. 

Although it hasn't been fully edited, this paper has 

been accepted for publication in a subsequent 

edition of this magazine. Before the final 

publishing, the content may change. 

TBDATA.2017.2778721, IEEE Transactions on 

Big Data, DOI for citation 

 

Fig. 1. Framework overview. 

features. On the one hand, there may be an 

enormous number of patterns due to the high 

density of cellular towers, yet some of them are not 

particularly helpful in analysing human urban 

activity. In contrast, 

However, some mobile phone towers exhibit a 

combination of traits from several designs. Due to 

the volume of communication between these 

cellular towers, it is difficult to discern the few key 

patterns that are buried. 

We create a powerful system to decode and model 

data on mobile traffic from thousands of cellular 

towers in order to overcome these difficulties. Our 

suggested framework is shown in broad strokes in 

Fig. 1. Data preprocessing, time-series 

decomposition, pattern modelling, anomalous event 

detection, and traffic prediction make up our 

system's five components. It can handle massive 

amounts of data. component components include 

residual, seasonal, and trend. An irregular tendency 

across time is represented by the trend component. 

 

The residual component is thought of as sounds or 

odd events on a larger time scale, while the 

seasonal component shows a periodic variation that 

typically corresponds to routine activity. 

We create a model of human activity patterns based 

on seasonal factors and present a technique for 

predicting mobile data traffic. Additionally, we 

provide a technique to identify anomalous 

occurrences from traffic data and verify the 

outcomes using actual traces. In order to reduce the 

impact of unusual eventsWe create a model of 

human activity patterns based on seasonal factors 

and present a technique for predicting mobile data 

traffic. Additionally, we provide a technique to 

identify uncommon occurrences from the traffic 

logs and verify the findings using actual traces. We 

breakdown the original mobile traffic data and 

extract the primary traffic patterns by utilising 

hierarchical clustering [8], which does not need a 

specified number of patterns, in order to remove 

the effect of anomalous occurrences and model the 

traffic pattern from several angles. 

As a result, we may use the residual component to 

identify unexpected occurrences. 

We obtain the following intriguing results by using 

our method to look at the mobile traffic records of 

6,400 cellular towers, which were gathered by ISP 

from Shanghai. 
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According to the one-day seasonal component of 

their traffic consumptions, the cellular towers can 

be divided into five groups, and these groups 

correspond to five different types of urban function 

areas: the residential area, the transportation area, 

the office area, the entertainment area, and the 

mixture area. This discovery demonstrates how 

human activity patterns affectWe introduce the 

ARIMA model, which forecasts mobile traffic with 

great accuracy, demonstrating the importance of 

this result. 

In order to detect the two main trends—which 

alternately rise and decrease during the week—we 

may model the traffic patterns with the weekly 

trend component. 

These two weekly trend patterns are a reflection of 

actual, week-long human activity. 

Our analysis demonstrates that the discovered 

anomalous events match the anomalies with actual 

occurrences, demonstrating that odd events may be 

identified from the residual component utilising our 

suggested technique of anomalous event 

identification. 

 

The remainder of this essay is organised as follows. 

We discuss the used dataset and explain our 

rationale in Section II. 

We outline each element of our system in Section 

III. 

We specifically outline our decomposition and 

grouping methods, and by talking about the 

relationship between daily patterns and weekly 

trend patterns, we create a model for projecting 

mobile traffic consumption. Then, using the 

residual component, we provide a strategy to 

identify anomalous events. We analyse the results 

in Section IV, and after reviewing the related work 

in Section V, we wrap up this study in Section VI. 

II. MOTIVATION AND DATA 

SET 

A. Data Description and First Findings 

An anonymized cellular trace is the original dataset 

by an ISP from Shanghai, which spans the dates of 

August 1 and August 31, 2014, and comprises 2.4 

petabytes (1015) of logs from over 6,400 base 

stations (BSs) located across Shanghai. The trace 

includes the (anonymized) device ID, start and 

finish times of each data connection, the BS ID, the 

BS address, and the amount of 3G or LTE data 

utilised during each connection for each entry. This 

massive dataset covers human activity in Shanghai 

and offers a solid physical foundation for our 

investigation in the actual world. 

In Fig. 2, we display many straightforward 

representations of this dataset's properties. The 

Cumulative Distribution Function (CDF) of the 

time span between is displayed in Subplot (a). 

between two records in a row. The findings show 

that more than 85% of consecutive records occur in 

less than 60 minutes. Compared to an average 

inter-event time of 8.2 hours 

 

(a) CDF of interval time                                                    

(b) PDF of log number  

Fig. 2. Illustration of the quality of our dataset. 

The cellular data accessing logs are substantially 

more finely detailed during periods of consecutive 

mobile phone conversations [3]. The Probability 

Density Function (PDF) of the number of records is 

displayed in Fig. 2(b). 

per user, in that order. The majority of mobile users 

have over 1,000 recordings overall. These findings 

show that our dataset has a large number of records 

of mobile users, and the precise temporal 

granularity ensures the validity of human activity 

modeling. 

Our processing of the material into an easily 

consumable format allows for more effective use of 

the data. To be more specific, we begin by erasing 

logs that are duplicated or conflicted due to 

technological difficulties. Then, 

We achieve this by averaging the traffic and user 

count of each BS across brief intervals of time. The 

data we've collected suggests that a time span of 10 

minutes works well. This allows us to collect a set 

of data for the total traffic and user count at each 

BS. The array has a length of 4,032, with each 

member representing the amount of traffic or the 

number of users at a certain ten-minute period 

throughout 28 days. Finally, we use APIs from 
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Baidu Map to translate BS addresses to longitudes 

and latitudes, allowing us to locate specific 

landmarks. Figures 3 and 4 depict typical cases 

from our dataset. 

mobile phone users in a certain area served by a 

particular cell tower. Even if we can distinguish 28 

distinct one-day periods from the four-week mobile 

traffic shown in Fig. 3 (a), it is still possible to see 

that mobile traffic data is challenging to examine 

because of the various variations it includes. You 

can see the fluctuation in the tower's user base over 

the course of four weeks in Fig. 3 (b). It is 

interesting to compare Fig. 3 (b) with Fig. 3 (a) and 

see that the mobile traffic series is definitely full of 

peaks, some of which correlate to the peak numbers 

of users, while others are generated by unknown 

sources. Naturally, the impact of out-of-the-

ordinary occurrences and sounds further muddles 

interpretation. 

We may glean two insights from Fig. 4's depiction 

of the geophysical traffic volumes at 4 a.m., 10 

a.m., 4 p.m., and 10 p. 

To begin, diverse human activities at various times 

of the day result in varying traffic consumption. 

Since most individuals are still asleep at 4 in the 

morning, mobile data usage is low across the board. 

Due to most individuals being at work, peak times 

for mobile data use occur around 10am and 4pm. 

At 10 p.m., when most people have left work for 

the day and are starting to wind down at home, 

there is a surge in the volume of mobile data traffic. 

Two, cellular towers' bandwidth is used in various 

ways and at different times depending on the 

locations' mobile traffic. Towers for wireless 

communication, such as mobile phones, are often 

installed at strategic locations across a city.  

experience high traffic consumption in all time. 

The hottest areas covered by the darkest color also 

change over time, which suggests the movement of 

the crowd during one day. 

B. What Drives Us 

Data from cell towers may be used as a timely 

snapshot of urban life. The difficulty arises, 

however, from the intricacy of 

Due to the dynamic nature of mobile traffic data, 

the presence of outliers, and the absence of 

previous knowledge, it is difficult to directly 

extract the information we need from the original 

traffic data. 
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The complexity of mobile traffic data, the 

disruption of such abnormal occurrences, and the 

absence of previous information for data patterns 

are all issues that we use a time series 

decomposition technique to solve by drawing on 

the theory of time series analysis [7]. This kind of 

mobile traffic analysis has two benefits. As a first 

step, if we think of the traffic data as a time series, 

we can see that the four-week time series has a 

natural period of one day and a discernible trend 

within one week. By breaking down the time series 

into its constituent parts, we may conduct our own 

analyses of these characteristics. So, the initial 

traffic complexity may be much reduced after this 

breakdown. In addition, a time series 

decomposition allows us to isolate the disruption 

caused by out-of-the-ordinary occurrences, laying 

the groundwork for future research in this area. 

 

detection of unusual events Next, hierarchical 

clustering may be used to automatically find the 

most important patterns among the decomposed 

components hundreds of cell towers' worth of 

traffic data. 

Figure 5 shows the cumulative traffic over all 6400 

towers across various time intervals. The daily 

variations are shown in Fig. 5 (a), whereas the 

weekly variations are depicted in Fig. 5 (b), and 

they are quite comparable. In addition, the monthly 

traffic amounts shown in Fig. 5 (c) show a distinct 

weekly pattern. These commonsense conclusions 

push us to analyze mobile traffic data in order to 

draw out daily patterns and weekly trends. Thus, 

we recommended decomposing the traffic data into 

three components: the periodic components, the 

trend components, and the residuals, in order to 

study the traffic data in detail and to predict the 

traffic patterns at various scales. 

Systems and algorithms, part III 

1. Disintegration 

Following the format described in Section II-A, we 

have a mobile traffic record or observation fx1; x2; 

x4032g. The observation is a 28-day record of 

traffic data from a single tower, and each entry 

represents a 10-minute sum of that tower's traffic. 

Further, it has already been shown that this record 

displays both trend and periodicity. In light of this, 

we may use a time series technique [7] to break 

down this record as follows: 

Where st is a daily periodic traffic component, 

satisfying st = st+d for t = 1; 2; ; nd with the period 

d = 144 that corresponds to one day, mt is a trend 

traffic component, and rt is the residual component 

comprising the noise and the impacts of 

exceptional occurrences. In the absence of 

seasonality, we may estimate the trend component 

from the remaining series to complete the 

decomposition. 

First, we use a simple moving-average filter to 

estimate the trend traffic component, as follows: 

emt = 0:5xtq + xtq+1 + + xt+q1 + 0:5xt+q =d; 

where q = d=2 = 72 and q t n q. We then compute 

the average!k of the deviation series f(xk+jd 

emk+jd): q k + jd n qg for k = 1; 2; ; d. 

The average daily traffic pattern at the cellular 

tower may be expressed as sk =!k d1 Xd i=1!i; k = 

1; 2; ; d; sk = skd if k > d. When the periodic 

component of the original series is subtracted from 

it, giving us the de-seasonality series, we get dt = xt 

st; t = 1; 2; ; n: 

 

Take into account that the monthly series fdtg is 

used to determine the weekly trend of mobile 

traffic statistics. Therefore, we take the original 

four-week data fdtg and calculate its one-week 

average, b dt. 
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The weekly trend is then estimated using the 

moving average series b dt 1008 t=1. Time series 

trend estimation may be achieved in two broad 

ways: either by using a finite moving average filter 

to smooth the data or by using a function model to 

simulate the data. It is difficult to model the mobile 

traffic series using a universal function due to the 

fact that its trends differ between cellular towers. 

The former approach, then, is the most appropriate 

one for our data. An optimistic positive integer p is 

assumed here. Two-sided moving average 

 

Decomposition in one week is shown as an 

example in Fig. 6. A visual comparison of the 

original traffic data xt and the periodic component 

st is shown in Fig. 6 (a). Starting with the 

Based on the findings shown in Fig. 6 (a), we can 

see that despite the fact that the original traffic 

statistics are quite noisy, there is a daily periodic 

component that displays a two-peak pattern. 

The mt component of the weekly trend, shown in 

Fig. 6 (b), clearly shows that weekday traffic is 

greater than weekend traffic. The decomposition's 

one-week residual component rt is shown in Fig. 

6(c). Unpredictable fluctuations in the volume of 

traffic may be accounted for by the residual 

component. For all four weeks, the autocorrelation 

of the residuals is shown in Fig. 7 to be less than 

0.1, suggesting that rt is very similar to white noise. 

 

Fig. 7. Autocorrelation of the residuals. 

B. Clustering 

We aim to identify the key traffic patterns among 

6,400 cellular towers according to both the seasonal 

and weekly trend components obtained from the 

above decomposition. As pointed out previously, 

this task is difficult for three reasons. Firstly, we 

generally have no idea how many main patterns 

Periodical component and original series (b) Trend 

co 

 

Fig. 6. Illustration of decomposition on the traffic 

patterns of one base station. 

Algorithm 1 Agglomerative Hierarchical 

Clustering. 
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should be determined for thousands of towers' 

worth of data. 

In addition, cell towers are often situated in densely 

populated metropolitan areas, therefore tower 

traffic patterns may be very variable each other 

because to variations in user population and 

geographic dispersion. Furthermore, there are some 

"poor" towers with missing traffic data. It's difficult 

to know how to 'kick' these abnormal people out. 

We design a two-stage process to reliably 

recognize the most important patterns in the traffic 

logs: Two steps are involved here: 1) counting, 2) 

locating, and 3) confirming the most important 

patterns. 

1) Recognize Commonalities: The Identifier is the 

heart of our mining infrastructure, which extracts 

useful information from network data. 

Because it is not necessary to know the whole 

number of clusters beforehand, hierarchical 

clustering [8] was selected as our identifier. In 

hierarchical clustering, each input point is treated 

separately as a cluster, and then the closest clusters 

are merged into larger ones in an iterative process 

from the bottom up. In Algorithm 1, we see how 

this hierarchical grouping is accomplished. 

Evidently, knowing when to stop the clustering 

process is a crucial technological difficulty for this 

kind of hierarchical clustering. To find the right 

amount of clusters, we use the Davies-Bouldin 

index (DBI) [9]. We'll use vector notation to 

express a series for ease of writing; for example, 

the ith mobile traffic sequence will be written as 

Xi[t]. 

may also be written as Xi. The DBI is specified 

using this notation style as 

 

where Ti is the total number of towers in the ith 

cluster, R is the total number of clusters, and Xi is 

the traffic data from the ith cellular tower. When 

As a result, we can determine the optimal amount 

of patterns while still achieving the lowest possible 

DBI. Important patterns may be isolated from the 

whole set by applying a set of filters to the data. 

a) Patterns of Periodic Components: Fig. 8 (a) 

displays the DBI as a function of the number of 

clusters, where the least DBI suggests that the 

optimal number of clusters is 1,040 for the periodic 

component of the mobile traffic. 

We extract the five main patterns from all the 

clusters by treating the groups of more than 100 

cellular towers as daily traffic patterns. These five 

main patterns, shown in Fig. 8 (b), are 

representative of daily traffic fluctuations and cover 

the hours 00:00 to 24:00. You'll see that all of them 

have a noticeable lull in activity between midnight 

and sunrise, when most people are asleep, but that 

their peak activity times vary widely. 

In particular, Pattern #1 experiences its highest 

volume of mobile traffic in the late evening, Pattern 

#2 exhibits two rush hour peaks at around 8:00 and 

18:00, Pattern #3 has a lasting stable high traffic 
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from 8:00 to 16:00, Pattern #4 displays high traffic 

during the day, especially during lunch and dinner, 

and Pattern #5 appears to show the mixed features 

of the first four patterns. 

FIGURE 8: The cumulative distribution function 

(CDF) of the correlation distance between towers 

in each cluster and the cluster centroid (c). Nearly 

all the towers in each cluster are located a safe 

distance from the cluster's center, since all the 

curves reach 100% at a distance less than 0.2. Thus, 

the clustering result may be trusted. 

b) Trend Component Patterns: The weekly trend 

reveals the ebb and flow of mobile traffic on a 

weekly time scale. To examine the weekly trend 

part of the traffic, we use the same identifier we 

used before. However, in this case, we have some a 

priori knowledge about two obvious key patterns: 

during the weekdays, people go to their 

workplaces, for example in business districts, and 

the traffic reaches high values in weekdays at these 

places, while during the weekends, people go to 

entertainment places or stay in residential areas, 

and the traffic reaches peak values in weekends, at 

these places. Because of this, we can limit the 

number of key patterns to two, and Fig. 9 shows the 

two key patterns discovered using clustering for the 

weekly trend part of the traffic. It's clear that 

Pattern #1 has steady, high traffic throughout the 

week but much lower numbers on the weekends, 

whereas Pattern #2 has low traffic during the week 

and high values during the weekend. 

The two weekly trends shown here are direct 

reflections of human urban activity. 

 

Fig. 8. The DBI as the function of the number of 

clusters and the key daily patterns obtained by the 

clustering for the periodic component of the traffic. 

TABLE I 

 

We then classify the daily patterns by the particular 

urban function in order to establish a connection 

between the detected patterns and normal human 

urban activities. thematically connected domains. 

We link the everyday rhythms to the interplay of 

four essential city activities. The detected patterns 

are then further verified by examining the 

correlation between daily and weekly trend 

patterns. 

1. Identify Recurring Activities and Name Them a) 

Figure 8 depicts five different daily traffic patterns, 

each of which has to be placed in its geographical 

context before we can make any meaningful 

connections between them and the regular activities 

of urban dwellers. Typical rush hours in cities 

correspond to the two peaks in the daily pattern #2 

shown in Fig. 8 (b), which occur at 8:00 and 17:00-

18:00. So, we might speculate that the Shanghai 

transportation function region is involved in this 

everyday trend. Points of interest (PoI) distribution 

is used to characterize the geographical elements of 

each daily pattern, allowing for more precise 

labeling. One of the largest providers of online map 

services, Baidu Map, supplies us with 23 different 

types of Points of Interest (PoI) including 

restaurants, hotels, shopping centers, entertainment, 

sports, schools, tourist attractions, tourist 
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development zone, finance areas, offices, 

corporates, factories, industrial areas, science park, 

economic development zone, high technology 

development zone, residential areas, living 

services, towns, villages, subways, and overpasses. 

We start by counting the PoIs within 200m of each 

cell tower for every daily pattern. Afterwards, we 

standardize the points of interest across all clusters. 

Table I presents a summary of the PoI distribution 

for all of the different patterns. To make the 

average number of PoI more legible, we increased 

it by 1000. All three of the most severe forms of 

PoI are indicated by shades of orange, with the 

most severe ones appearing at the top of the list for 

each daily pattern. It is evident that the distribution 

of points of interest (PoI) varies widely amongst 

patterns, and we may assign names to patterns 

based on the primary categories of PoI they 

include, such as Residential Area, Transport Area, 

Office Area, Entertainment Area, or Mixture Area. 

Location of Households: Towers in cluster#1 

mostly serve residential and commercial buildings, 

as shown in Table I. When taken in conjunction 

with the evening-high mobile traffic patterns shown 

in Fig. 8 (b), we can conclude that this cluster may 

be classified as a residential region, where people 

typically return after a day at the office. 

The subway station point of interest (PoI) is a 

substantially larger transport area than the other 

PoIs in cluster #2. Figure 8 (b) depicts the two 

daily traffic peaks that occur while individuals are 

traveling to and from their homes and places of 

employment. As a result, we may classify this 

grouping as a transportation hub. 

Corporate and financial services are the most 

popular points of interest in the third office cluster. 

Also, keep in mind that the volume of this daily 

pattern remains strong all the way through '9 to 5' 

This allows us to connect the dots between this 

cluster and Shanghai's commercial districts. 

Cluster #4 is heavily skewed toward points of 

interest (PoIs) related to dining and retailing. As 

can be seen in Fig. 8, this cluster's peak hours for 

traffic are just around lunch and evening (b). From 

these indicators, it's safe to classify this location as 

a tourist hotspot. 

Cluster #5's Points of Interest (PoIs) are dispersed 

quite uniformly among several functional zones, 

and the daily traffic patterns in these areas 

demonstrate a curious admixture of 

 

from the first to the fourth cluster. Therefore, this 

cluster fits the criteria for a mixed region. 

2. b) Identify the weekly pattern Patterns: Weekly 

tendencies 

 

have been sorted up into the weekday-high and 

weekend-high categories, respectively. The former 

is more often linked with commercial and industrial 

settings, whereas the latter is more often connected 

with private homes. 

c) The Connection Between Weekly and Daily 

Trend Patterns Here we calculate the ratios of the 

two weekly trend patterns to each daily pattern, as 

shown in Fig. 10, to investigate the connection 

between the two time scales (a). It is interesting to 

note that the weekend-high trend pattern accounts 

for 66% of towers in residential areas (daily 

pattern#1) and 78% of towers in entertainment 

areas (daily pattern#4), while the weekday-high 

trend pattern accounts for nearly 90% of office 

areas (daily pattern#3) and over 60% of transport 



21 

 

areas (daily pattern#2). These findings are 

consistent with what we know about human 

behavior in urban settings, providing more support 

for our categorization. 

As was previously discussed, there are 23 POI 

values distributed over five functional areas. 

Additionally, some of these 23 unique POIs 

(finance, offices, corporations) are common high 

POIs during the weekdays, while others 

(residential, live service, entertainment) are typical 

high POIs during the weekends. Figure 10 (b) 

displays, for each functional area, two ratios: the 

ratio of the sum of the weekdayhigh POI values to 

the total of all POI values, and the ratio of the sum 

of the weekendhigh POI values to the sum of all 

POI values. Figure 10(b) provides unambiguous 

confirmation that our pattern categorization is 

correct. 

Predictions, C. 

Now, we use the clustering result as the foundation 

for a mobile traffic forecasting system. The mobile 

traffic series is nonstationary and exhibits 

periodicity, hence we use the seasonal 

autoregressive integrated moving average 

(SARIMA) model [10] to accomplish this. ARIMA 

is the abbreviation for the overarching version of 

the SARIMA model (p; d; q)  (P;D;Q) There are 

(P;D;Q) terms representing the seasonal portion of 

the model, where P is the number of seasonal 

autoregressive terms, D is the number of seasonal 

differences, and Q is the number of seasonal 

moving average terms, and there are (q; d; q) terms 

representing the non-seasonal portion of the model, 

where q is the number of non-seasonal 

autoregressive terms, d is the number of non-

seasonal differences, and q is the number of non-

season 

From the mobile traffic series fxtg4032 t=1, we are 

able to reliably extract the SARIMA model 

ARIMA(1; 0; 1) (1; 1; 1)1008. 

 

where at is the white-noise series, m0 = 1008, B 

stands for the backward shift operator, and Bxt = 

xt1 establishes the parameters ar, sar, ma, and sma, 

respectively minimum arithmetic mean squared 

error 

Using the aforementioned model, we can forecast 

the traffic for the next week using data from the 

past three weeks broken down into four daily 

patterns. The forecasting results are shown in Fig. 

11, and the logarithmic traffic series is utilized to 

improve readability. Across all four configurations, 

it is evident that the predicted series closely 

matches the underlying actual logarithmic traffic 

series. 

The reliability of the forecast is then measured 

objectively. 

Let us define resident area (rsd) as the number of 

buildings designated as such, with the associated 

index set to be Nrsd. In this case, we get a genuine 

logarithmic series of traffic counts for each tower 

k: x(k) = 1; x(k) = 2;... = x(k) = 1008 

median value (k). The median of the actual traffic 

counts for the residential areas is then determined 

by using the formula 

 

We summary the MSEs of the classified model 

predictions for the four daily traffic patterns in the 

first row of Table II. The 
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ratios of these four MSEs over the corresponding 

mean values of the four daily-pattern traffic series 

are listed in the second 

row of Table II, while the ratios of the four[MSE 

values over 

the corresponding mean values of the four daily-

pattern traffic 

series are given in the third row of Table II. 

 

As a last step, we add mobile traffic forecasting as 

an application to our system and use cellular label 

data to dramatically boost the performance of the 

ARIMA model. 

 

towers accumulated in the Clustering phase. We do 

this by training four separate forecasting models, 

each tailored to one of four distinct daily trends. 

We choose a model for a given set of input traffic 

data from a single tower based on the tower's label. 

Our experimental results on our dataset 

demonstrate that this method yields significantly 

improved prediction precision. 

D. Taking Note of the Leftovers 

We now show our technique for determining, given 

a cellular tower's residual traffic data, whether or 

not an accident or unusual event occurred. The 

residual and user count for a chosen cell tower in 

the HongKou area are shown in Fig. 12. As can be 

seen in Fig. 12 (b), there are three distinct peaks in 

the number of users that correspond to distinct 

crowd events; however, due to the high level of 

noise in the residual component, these three events 

cannot be identified from the residual alone. A 

similar issue is seen when contrasting Figure 12 (c) 

and (d), where a surge in the number of users is 

observed on the second Saturday but is obscured by 

the residual component. 

We establish a threshold of 4 standard deviations 

from the mean for each residual series to filter out 

the noise, which represents meaningless random 

occurrences in the residual component. When the 

residual component stays over the threshold for 

more than 30 minutes, we classify it as an abnormal 

occurrence. If we assume a sampling interval of 10 

minutes, then 3 samples in a row would represent a 

sampling interval of half an hour. 

 

 

To put our cellular-based anomaly detection system 

to the test, we first identify three cellular towers 

near gymnasiums or other public venues where 

mass gatherings take place element of mobile 

traffic that doesn't contribute much. Table III's RD 

(residual detection) column shows if the crowd 

event can be deduced from its matching residual 

series. Tower No.1 is situated near Hongkou 

Stadium, Tower No.2 is close to the Mercedes 

Benz Cultural Center, and Tower No.3 is close to 

the Luwan Gymnasium. We can thank soccer for 

the odd occurrences. 
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events like concerts or sporting competitions that 

result in a spike in use. Table III demonstrates that 

our technique is able to accurately identify the vast 

majority of occurrences effective and trustworthy 

methodology 

We then use our algorithm to identify unusual 

occurrences across all cell towers. Mapped out in 

Fig. 13 is the location of all the weird things that 

happened this month. It is clear from the heat map 

that most anomalous occurrences take place in and 

around the city's core, and that their distribution is 

highly correlated with the consumption of mobile 

traffic shown in Fig. 4. This suggests that 

anomalies tend to take place in areas with high 

levels of mobile traffic. Figure 14 displays the 

means and standard deviations of outliers 

throughout a four-week period. Weekends have 

higher averages than weekdays, which makes sense 

given that concerts and other special events tend to 

take place then. An further fact that has been 

noticed is that the standard deviation is highest on 

Sunday. This finding suggests that the frequency of 

unusual occurrences varies throughout weeks. Both 

the temporal and geographical patterns of the 

identified abnormalities are consistent with human 

urban activity. 

Our system's primary functions—traffic forecasting 

and anomaly detection—are also available as web-

based products. With only a few inputs, our system 

can model and name every cell tower in a given 

area. Using input traffic data from a single tower, 

we may choose a prediction model in accordance 

with the label, and then update the model's input 

data to reflect traffic over the last three weeks (or 

whatever time period is of interest). Our system 

configures variables used for outlier detection. 

 

use past information as the basis. Using an efficient 

decomposition strategy, our system is able to 

breakdown the most recent traffic data every few 

minutes (or, alternatively, take up the most recent 

one week's data as input) and identify patterns. 

inconsistencies in the noise component in real time. 

Therefore, our system can provide live traffic 

forecasting and anomaly detection based on a 

previous mobile traffic dataset. 

IV. CONCLUSION AND IMPRESSION 

We have so far derived two natural weekly trend 

patterns from the trend components of our traffic 

data, and five daily patterns from the regular 

periodic components. 

The human activities and surrounding 

environments that contribute to these traffic 

patterns are the focus of the next section. 

1) Recognizing Daily Routines 

1) Seasonal variation: Daily traffic patterns often 

show both high and low points throughout the day. 

Table IV details the daily patterns and when they 

peak and drop. 

Table IV shows that, across all patterns, the lowest 

use occurs between 4 and 5 am, when most users 

are fast asleep. There is a peak period in the 

residential area at 21:00, when people return home 

from work, and two peaks in the transportation 

sector at 8:00 in the morning and around 5:00 to 

6:00 in the evening, which correspond to the two 

rush hours of the day. There is constant, heavy foot 

traffic in the workplace, with no discernible "peak 

period." 

There are two major periods of day when people 

congregate at entertainment venues; these are 
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around noon and six o'clock, when people typically 

eat lunch and supper. 

2) The ratio of daytime to nighttime traffic 

volumes: Fig. 15 (a) displays, for each daily 

pattern, the volume of traffic during the daytime 

hours of 7 a.m. to 7 p.m., and the volume of traffic 

during the nighttime hours of 7 p.m. to 7 a.m. 

Daytime traffic volumes are clearly greater than 

nighttime volumes for all patterns except 

residential areas. This squares well with the way 

that people often go about their everyday lives. 

Figure 15 (b) shows that the percentage of daytime 

to nighttime traffic varies significantly between 

patterns. More specifically, the ratio is around 0.8 

in residential regions, which is much lower than the 

ratios in transportation hubs, business districts, and 

entertainment districts. Human everyday activities 

provide an excellent explanation for this 

phenomenon; during the day, individuals travel to 

areas like employment and amusement, and at 

night, they return home. The greatest ratios, up to 

1.4, are seen in business districts, when most 

individuals are away at work. 

Section B: Recognizing Weekly Trend Patterns 

There are two distinct weekly trends discernible in 

the weekly trend components: a weekday-high 

trend and a weekend-high trend. In Fig. 16 

We provide one week's worth of traffic based on 

these two typical weekly patterns. From Fig. 16 (a), 

we can see that the weekend-high pattern has lower 

traffic than the weekday-high pattern, and vice 

versa for the weekday-high pattern (b). As can be 

seen in Fig. 16 (a), the weekdays' traffic peaks in 

the late afternoon, suggesting that the residential 

pattern is the primary daily pattern contributing to 

the weekend's high pattern. In Fig. 16 (b), 

 

 

Workday traffic is much greater than non-workday 

traffic, suggesting that the workplace schedule is 

the primary contributor to the weekday-high trend. 

Figure 17 depicts the relative contributions of the 

two weekly trends' individual daily patterns. 

According to Fig. 17 (a), the most common of the 

four common daily routines (1, 2, 3, and 4) is the 
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The office pattern (#3), which occupies 29.6% of 

the towers, is the single most important factor in 

the weekday-high pattern, followed by the 

entertainment pattern (#4). whereby 26.4 percent of 

the buildings are used as storage space. It makes 

perfect sense that the office pattern is the primary 

driver of the weekday-high pattern, as this reflects 

the primary activities of most people during the 

week, while the entertainment pattern also 

contributes heavily to the weekday-high pattern, 

both because people need to eat at lunch and dinner 

every day and because there are a lot of towers in 

the entertainment district. On the other hand, as 

shown in Fig. 17 (b), the weekend-high pattern is 

driven mostly by the residential pattern (#1) and the 

transit pattern (#2). This is a very accurate 
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depiction of how most people spend their free time 

on the weekends. Interestingly, the mixed pattern 

(#5) accounts for almost 20% of the towers in both 

the weekday-high and weekend-high patterns. 

Because of this, mixed areas are what they are. 

FIVE: CONNECTED DOCUMENTS 

Many studies have focused on extracting 

information about urban environment dynamics 

and social events from digital marks left behind 

[15]. Here, we classify the relevant literature based 

on four criteria: Analyzing Traffic Data enabled 

apps; digital footprints used to identify urban 

dynamics; time series techniques utilized to analyze 

mobile traffic data; and event detection from 

mobile traffic. 

Data on cellular traffic flows has been put to use in 

several fields. Personal characteristics such as 

sexual orientation, race, religion, and political 

leanings may be inferred from the data [5]. Human 

movement patterns have been modeled using CDRs 

[3, 11], with the results indicating a high degree of 

temporal and geographical regularity [3] and a high 

degree of prospective predictability [11]. The 

research [4] examines 3G cellular networks with 

the intention of elucidating the habits of mobile 

data users and finds that a tiny percentage of very 

active users account for the vast bulk of the 

network's data consumption. Books [12], [13] use 

CDR statistics to infer and categorize land use. The 

utilization of cellular network traces enables further 

applications, such as the inference of friendship 

network structure [14], the comprehension of 

mobile user browsing activity [14], and the 

optimization of content delivery depending on user 

location [19]. 

CDRs, social media data, and mobile traffic data 

are the three most often utilized forms of digital 

footprints for uncovering human activity patterns in 

metropolitan areas. In order to simulate human 

activity patterns [3, 21] and to estimate population 

dispersion [21], CDRs are used. CDRs lack 

temporal density compared to mobile traffic data. 

Mobile social instant communication programs 

have largely supplanted phone calls as the major 

means of contact in metropolitan areas, thanks to 

the proliferation of mobile Internet. The telephone 

has been mostly replaced by instant messaging 

apps, which many prefer. In addition, the 

proliferation of mobile payment methods and the 

constant flow of mobile traffic that cities generate 

have cemented the Internet's dominance over all 

aspects of urban social life. As a result, there is a 

wealth of information about people's behaviors 

available in mobile traffic data. Based on a social 

activity dataset and GPS travel records, the study 

[22] offered a technique to recognize urban events. 

The information collected from social media sites 

provides firsthand evidence of the actions of 

specific users. Examples include the visual 

depiction of urban occurrences in Twitter posts. 

However, social media data are more challenging 

to analyse and mine than mobile traffic data since 

they are often in text, audio, or video format and 

include a great deal of duplicate information. 

Meanwhile, since they are a compilation of data 

from many different users, mobile traffic statistics 

are better at protecting citizens' privacy. A further 

use for mining the contexts and behavior 

information from mobile traffic data is shown by 

the study [20], which developed a system to 

categorize service usages using encrypted Internet 

traffic data of mobile messaging Apps. The 

disintegration of traces of human activity in urban 

areas has been the subject of several studies. To 

dissect a human endeavor, the authors [17, 22] 

offer a non-negative tensor factorization method. 

Tensor into more fundamental tensors of daily life. 

On the other hand, our system is able to pick the 

number of fundamental patterns on its own, which 

is an advantage over other methods that force you 

to choose an arbitrary number. An image 

segmentation method was used to mine social 

events from a 3D matrix [18] constructed to 

represent the time, location, and likelihood of a 

social event based on a probabilistic model. This 

algorithm did not clearly dissect the human traces 

and did not take into account additional data like 

daily pattern or long-term trend, unlike our own. 

By splitting the original cell phone activity series 

into the seasonal communication series and the 

residual communication series, the research [2] is 

able to deduce aspects of urban ecology from 

spatial-temporal cell phone activity data. In 

contrast to the approach used here, the mobile 

phone traffic series is decomposed in [2] by first 

undergoing a frequency-domain transformation 

using FFT, from which the primary frequency 

components are then extracted. Our report proves 

that mobile traffic trends reflect long-term 

fluctuations, which are overlooked in this study. In 

order to analyze mobile traffic data, time series 

analysis is often used. This is particularly true for 

mobile traffic forecasting. While work [24] models 

and forecasts real wireless traffic, such as GSM 

traffic, using seasonal ARIMA models, work [23] 

proposes a technique for traffic forecasting based 

on multiple regression model for time-series. We 

also use an autoregressive integrated moving 

average (ARIMA) model, tailoring the model's 

parameters to actual daily trends. We also 

demonstrate that our model is capable of producing 

accurate predictions of mobile traffic usage. To 

break down a human activity tensor into 
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fundamental life pattern tensors, [17] [22] present a 

non-negative tensor factorization technique. On the 

other hand, our system is able to pick the number 

of fundamental patterns on its own, which is an 

advantage over other methods that force you to 

choose an arbitrary number. An image 

segmentation method was used to mine social 

events from a 3D matrix [18] constructed to 

represent the time, location, and likelihood of a 

social event based on a probabilistic model. This 

algorithm did not clearly dissect the human traces 

and did not take into account additional data like 

daily pattern or long-term trend, unlike our own. 

By splitting the original cell phone activity series 

into the seasonal communication series and the 

residual communication series, the research [2] is 

able to deduce aspects of urban ecology from 

spatial-temporal cell phone activity data. In 

contrast to the approach used here, the mobile 

phone traffic series is decomposed in [2] by first 

undergoing a frequency-domain transformation 

using FFT, from which the primary frequency 

components are then extracted. Our report proves 

that mobile traffic trends reflect long-term 

fluctuations, which are overlooked in this study. In 

order to analyze mobile traffic data, time series 

analysis is often used. This is particularly true for 

mobile traffic forecasting. While work [24] models 

and forecasts real wireless traffic, such as GSM 

traffic, using seasonal ARIMA models, work [23] 

proposes a technique for traffic forecasting based 

on multiple regression model for time-series. We 

also use an autoregressive integrated moving 

average (ARIMA) model, tailoring the model's 

parameters to actual daily trends. We also 

demonstrate that our model is capable of producing 

accurate predictions of mobile traffic usage. A 

large amount of work has gone into using cellular 

traffic analysis to spot irregularities. Standard 

statistical methods are used to an analysis of phone 

data to discover how often and where unusual 

occurrences have occurred techniques from 

percolation theory to characterize these spatial and 

temporal oddities. There is a correlation between 

the sort of event and the origins of those attending, 

as shown in [26], which analyzes over 1 million 

cell-phone traces to study crowd migration during 

special events. The research [27] examines how 

communities react to shocks from the outside 

world, like as terrorist bombings and natural 

disasters, by tracking how people's patterns of 

movement and communication alter in real time. 

Our study effectively extracts the root causes of 

anomalous events by deconstructing mobile traffic 

series, and our anomalous event detection approach 

has been used to identify out-of-the-ordinary 

activities, such concerts and matches, in mobile 

data. 

In conclusion, we provide a novel framework for 

studying and modeling urban functional zones and 

human activities using data on massive amounts of 

cellular mobile traffic gathered by ISPs. There are 

three main ways in which our work is novel: At the 

outset, we use a massive dataset of mobile traffic. 

Our dataset better reflects urban dynamics in the 

mobile age, and it has finer temporal and 

geographical resolution than previous digital 

records. To further examine mobile traffic 

statistics, we use a novel approach and use a times 

series decomposition technique. On the one hand, 

we use periodic and trend components to represent 

human regular activity patterns over many time 

periods in urban environments. 

Instead, we focus on the "residual" part of the 

model, where the impact of random occurrences is 

obscured by background noise. This approach gives 

a thorough understanding of interactions between 

human activities and network dynamics, and, to the 

best of our knowledge, has not been applied in 

mobile traffic analysis in the open literature. 

Finally, we present a methodology for investigating 

mobile traffic records that incorporates human 

activity pattern mining, mobile traffic forecasting, 

and anomaly detection. 

INTERLUDE: Section VI. Conclusions 

In this article, we investigate the link between 

urban dwellers' mobile data traffic and their day-to-

day routines systemic and all-encompassing setting 

based on a massive collection of mobile traffic logs 

with a fine granularity. We have developed an 

effective system that combines the processes of 

traffic pattern clustering and labeling, mobile 

traffic forecasting, and event detection by using a 

generic time series decomposition approach. First, 

we do a natural decomposition of the traffic series 

into a daily periodic component, a weekly trend 

component, and a residual component. We then 

isolate five primary daily activity patterns that are 

intrinsically linked to many domains of human 

functioning. 

Through the use of an ARIMA model and the 

training of several models based on historical data, 

we are able to considerably enhance the accuracy 

with which we can estimate mobile traffic. 

In addition, the trend component's two weekly 

trend patterns are familiar to us, which again 

represent the underlying weekly human activities in 

the actual world. Finally, we utilize the residual 

component to identify outliers generated by 

abnormal human behavior, and we demonstrate that 

our anomalous event identification approach can 

effectively identify abnormal human behavior from 
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the noisy residual-component series that is 

characteristic of the actual world. 

Our system is capable of handling large offline 

mobile traffic databases while simultaneously 

providing online traffic forecasts and event 

detection services. As a result, our research has laid 

the groundwork for efficiently managing large 

quantities of mobile traffic data and has offered a 

deep dive into the complex interplay between 

mobile data traffic consumption and human 

activities in the modern urban setting. 
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