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Abstract”: “An automated method for identifying and classifying three categories of surface 

defects in rolled metal has been developed in order to meet the stipulated efficiency and 

speed criteria of defectoscopy. Researchers have examined the possibility of using the brain's 

residual neural networks to detect problems. The ResNet50 neural network-based classifier is 

regarded as a good place to begin. ' Accurately classifying pictures of flat surfaces with 

damage into one of three categories, the model achieved an overall accuracy of 

96%.”ResNet50 has been proved to be a successful tool for identifying faults on metal 

surfaces because of its great identification, speed, and accuracy. 
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Introduction” 

As a result of their categorization, it 

is now feasible to swiftly detect and 

remove the causes of certain forms of 

damage to steel bands' surface [1–3]. As 

a result, fault categorization efficiency 

and accuracy are critical to metal 

product quality management. 

Defectoscopic of the rolled metal surface 

may now be performed at a sufficiently 

high level thanks to several new optical-

digital technologies that have been 

developed lately. Many flaws with similar 

shapes are recognized, but the correct 

identification of them needs more 

investigation [8–10]. Even now, the 

development of algorithms for the 

detection and identification of surface 

defects with various degrees of roughness 

and huge color intensity gradients is still 

relevant In addition, the lighting of the 

rolled metal band is typically sensitive to 

traditional systems. As a result, the light 

should be dispersed evenly over the 

operation. Control criteria and 

fundamental features of various flaws, 

such as films, cracks, burrs, etc., are 

defined in appropriate standards [11]. As 

a rule of thumb, neural networks trained 

on a large number and correctly annotated 

pictures depicting flaws or instances of an 

unbroken surface should be employed.” In 

the absence of abnormal damage or 

temperature changes, the process may be 

enhanced and rolling equipment 

maintenance costs can be lowered by the 

study of defect geometry and the 

collecting of large statistical data 

samples.Thus, unexpected equipment 

failures may be avoided. 
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Deep residual neural networks 

should be used to build a variety of 

classification models for these tasks. 

The photos of rolled metal's flat surface 

are used to study the measures' 

qualitative quality. Defect pictures are 

also used as a starting point for 

identifying steel band flaws, in addition 

to being used as defectoscopic damage 

detection. For neural networks to 

operate, a number of activities must be 

completed, including the creation and 

preparation of training and control 

samples, the selection of neural network 

design, the optimization of operational 

parameters for its components, and the 

verification of findings. 

 

Defectoscopicdifficulties are 

addressed by a variety of neural network 

designs, such as AlexNet, GoogLeNet, 

ResNet, and so on. How complicated the 

model is affects its speed. The 

photographs of designated flaws in a 

certain metallurgical plant are fed into 

neural networks for training. In this 

way, the training sample may be 

processed taking into consideration the 

current equipment's properties and the 

defect's morphology. This avoids the 

issue of technical inconsistencies that 

are inherent in flaws. Another 

significant issue is the identification and 

categorization of multiple problems of 

distinct classes with obviously different 

or similar characteristics. Such many 

flaws need the creation and refining of 

established algorithms in order to 

increase the accuracy of identifying 

harm caused by such errors. Existing 

systems can only detect previously 

categorized problems under stable 

operating circumstances. 

 

The classification of steel surface 

defects is an essential job for both 

identifying faults and investigating the 

reasons of their formation. As a result, 

the number of flaws in the steelmaking 

process may be dramatically reduced. 

There have been a lot of past studies that 

have looked at the reasons and ways for 

predicting the flaws in metallurgical 

equipment. Continuous billet casting 

machines and high-speed rolling, both 

of which may boost production, are not 

being exploited to their full potential 

because of the possibility for new sorts 

of damage to metallurgical equipment 

that comes with increasing production 

speeds. Defects in rolled metal may 

fluctuate in shape and parameter 

"instability" due to equipment failures. 

For rolled goods, low-cost optical-

digital quality control systems are 

already being adopted in metallurgical 
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companies in Ukraine and Russia, 

making it evident that these systems are 

essential. Systematic research into 

manufacturing defects, the ability to 

correlate defect geometry with its 

underlying causes, and the development 

and implementation of protocols and 

new methods for correcting 

technological inconsistencies or 

equipment failures are the primary 

objectives of these types of systems. 

 

Deep neural network methods for 

analyzing steel surfaces are frequently 

employed. Deep neural networks. 

According to the findings of one 

research, supervised steel defect 

classification can be accomplished using 

a max-pooling convolutional neural 

network technique. A classification job 

with seven faults gathered from a 

genuine manufacturing line yielded a 

7% error rate. For instance, a 

convolutional neural network with class 

activation maps has been shown to be an 

effective tool for identifying steel flaws. 

 

It is the goal of this study to use 

residual convolutional neural networks 

to build a technique for detecting and 

categorizing faults in flat metal surfaces. 

1. DefectsandTheirClassification 

Standardization of rolled-metal 

flaws is well-established knowledge. 

Black (steel) rolled metal faults are 

described and illustrated in detail in 

GOST 21014-88, which is a Russian 

standard. Concurrently, newer devices 

and controls categorize faults in 

accordance with parameter descriptions 

that are subject to change depending on 

the technology [11]. An incorrect 

description of the defect characteristics 

allows them to be partially omitted or to 

be attributed to faulty undamaged 

sections. Steelmaking and rolling are 

both possible causes of surface flaws. 

 

If the technical modes of rolling are 

adhered to, the amount of faults in 

contemporary metallurgical production 

is significantly reduced.They also 

include 

 

This is seen in Figure 2, where the 

ResNet50 blocks have bottlenecks. Each 

block has three levels layered one on top 

of the other. They have 3 convolutions 

in each of the three layers, each of 

which is 3 x 3. It is first reduced in size, 

and then restored to its original 

proportions. The 3 x 3 layer becomes a 

bottleneck in the entire system because 

of the smaller input/output size. 

 

The network has a completely 

connected layer with three neurons at 

the end after an average pooling layer 

(by three classes of defects 

investigated).If a given type of damage 
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is present in the input picture, then each 

neuron's output value may be interpreted 

as the model's confidence in its ability to 

correctly identify it.' 

 

 

PyTorch 3.6, together with the 

Keras and TensorFlow libraries, were 

used to create the classification model. 

2. Training 

We employed the transfer learning 

approach to improve the classifier's 

skills. With ResNet50, we started with 

1.4 million ImageNet-labeled photos 

representing 1000 different classes as 

a starting point. 

 

Twenty percent of the 

photographs were included in the 

exam, while the rest were used for 

training (the remaining 80 percent ). 

Over a quarter (40 percent) of the 

training data was utilized to verify the 

model's performance. Each group's 

contribution of the overall damage is 

represented by the damage done by all 

classes combined. 

 

“Multilabel and multiclass 

classifiers were the subject of this 

research. While a multiclass classifier 

assumes that each image only reflects 

damage from one class, a multilabel 

classifier assumes that damage from 

many classes may be represented in a 

single photograph.” Considering that 

just 0.3 percent of the photographs in 

our dataset exhibit damage of more 

than one class, we may conclude that 

their total contribution to the 

inaccuracy (assuming only one class is 

affected) is low. Multilabel classifiers 

have been shown to be more accurate 

in previous studies. That is why the 

focus was only on multilabel 

classifiers. To put it another way, the 

four binary classifiers that make up 

the multilabel classifier model are 

combined into one. Individual 

thresholds for each of them were 

utilized at the output of each one to 

determine the existence of a specific 

kind of damage in the picture. This 

allowed each class to be recognized at 

the highest level possible. 

 

“For training, binary loss functions 

and binary focal loss were used. False 

positives, false negatives, true 

positives, true negatives, accuracy, 

precision, recall, and the area under 

the receiver operating characteristic 

curve were all recorded at the end of 

each epoch (AUC). ” The greatest 

outcomes with imbalanced data have 

been demonstrated to come from 

FOCUS LOSS FUNCTIONS, which 

is why they are suggested. 

 

There were 29 residual neural 

network models examined in order to 

identify the best classifier. For each of 
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them, we have listed their 

hyperparameters (see Table 2). 
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“Table2.Hyperparametersofclassifiermodels. 

 

Number BaseModel Description 

 

batch_size=20,lr=0.001, 

steps_per_epoch=3000,validation_steps=1000 

batch_size= 16,lr= 0.0005, 

steps_per_epoch=2000,validation_steps=700 

batch_size=16,lr=0.001, 

steps_per_epoch=3000,validation_steps=1000 

batch_size=8,lr=0.001, 

steps_per_epoch=2000,validation_steps=7000” 

Diagrams of binary focused loss function variation during classifier training are shown 

in Figure 3 from Table 2. According to the validation loss functions, the model achieves its 

maximum generalization of the training data between 20 and 40 epochs and then starts to fit  

 

 

 

the data too closely. Similarly, there has been a drop in training losses. 

 

1 ResNet50 

2 ResNet50 

4 ResNet152 

3 SeResNet50 
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(a) (b) 

 

(c) (d) 

“Figure3.TrainingcurvesofclassifiermodelsfromTable2:(a)model1,(b)model2,(c)model3,

and 

(d) model4.” 

 

Best results were obtained by 

employing the ResNet50 model, 

which was trained by means of the 

SGD optimizer with a learning rate of 

0.001, a batch size of 20, and 3000 

iterations per epoch. Reduced learning 

rates of 0.0005 increased training 

time, but did not enhance results. That 

is why, in the end, we settled on 

0.001. Batch sizes of 8–20 had no 

meaningful impact on the outcome. 

F1ScoreMetric 

Using the F1 score, the values of 

recall and accuracy metrics may be 

summarized. Based on prior 

measurements, this statistic suggests a 

similar outcome: Class 1 damage has a 

metric in the range of 0.4398–0.4706 

and is the least recognized. It is much 

easier to see the difference between 

class 2 and class 3 damage since their 

metrics are so much higher: 

0.7940 and 0.7809. 

 BinaryAccuracyMetric 

Binary accuracy measures the percentage of predictions that are correctly labeled as 

binary. Figure 4 depicts the accuracy of various models as they are trained. From 0.9472 to 

0.9691, the binary accuracy of the test sample was found. 
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(a) (b) 

  

 

(c) (d) 

“Figure 

4.CurvesofbinaryaccuracyduringtrainingofclassifiermodelsfromTable2:(a)model1, 

(b) model2,(c)model3,and(d)model4. ” 

 

Figuring faults and finding out whether 

there are no defects are both significant 

components in the binary accuracy 

measure. The metric's value is high 

(0.9321–0.9884) for all classes because 

classifiers are very excellent at 

identifying the absence of defects. 

 

It was found that the majority of false 

positives were linked to photos that had 

artifacts that resembled genuine damage. 

Even though they do not contain any 

defects, the photos in Figure 5 are 

mistakenly classified as such. These 

little artifacts are clearly seen in Figure 

5. (Small patches on the surface signify 

class 1 damage, which is essentially a 

cut.). Images of Class 2 flaws, such as 

scratches and scuffs, have a distinct 

look, with black straight lines 

representing one such defect. Figure 5b 

shows how the model fails to work 

properly on this sort of surface. There is 

a lot of area and morphological variety 

in Class 3 damage. We can detect a 

similar set of artifacts in Figure 5c. 

Extending the training sample to include 

more flaws from each class may be 

anticipated to improve the model's 

performance, since this will offer the 

model with more information about the 

problems in each class. 
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“Figure 5.Falsepositivesfordamageofclass1(a),class2(b),andclass3(c),respectively. 

 SelectingtheBestModel” 

At varied levels of the output 

signal, the binary classifier is able to 

distinguish the input signal. TPR (true 

positive rate) is shown to be 

influenced by the false positive rate 

(FPR, or false positive rate minus true 

positive rate) at various thresholds by 

the graph below. Class distribution has 

no effect on ROC curves. There is no 

change in the ROC curve if the ratio 

of positive to negative cases varies. 

Model quality is summarized by the 

area under this curve (AUC-ROC), 

which measures the model's ability to 

identify a certain class. 

 

Model 1's ROC curves are shown 

in Figure 7 and may be found in Table 

2. The AUC-ROC ranges from 0.90 to 

0.98 depending on the class. AUC-

ROC area of 0.98 distinguishes class 3 

damage, which is marked by 

considerable morphological deviations 

from uninjured surfaces. Additionally, 

class 2 damage is well-known (AUC-

ROC area is 0.96). AUC-ROC areas 

as low as 0.90, which represent class 1 

damage, are the most difficult to 

identify. 
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“Table3.Performancemetricsofmodel1andmodel2. 

 

Class Threshold TP TN FP FN Recall PrecisionAccuracy  F1Score 

 

 

Model

1 

1 0.275 102 1548 19 23

6 

0.301

8 

0.8430 0.9839 0.4445 

2 0.350 1987 12,822 334 69

7 

0.740

3 

0.8561 0.9349 0.7940 

3 0.295 326 15,331 42 14

1 

0.698

1 

0.8859 0.9884 0.7809 

Model

2 

1 0.120 120 15,450 48 22

2 

0.350

9 

0.7143 0.9830 0.4706 

2 0.405 1960 12,805 367 70

8 

0.734

6 

0.8423 0.9321 0.7848 

3 0.190 285 15,343 35 17

7 

0.616

9” 

0.8906 0.9866 0.7289 

 

Class 1 items are the most challenging to detect. Different versions are able to detect 

different forms of damage in 

different ways. Model 2 identifies class 

1 problems 16 percent better than model 

1, however the accuracy measure reveals 

a much higher proportion of false 

positives (0.7143 vs. 0.8430). As a 

consequence, model 1's overall accuracy 

is greater than the average for its class. 

Class 2 and Class 3 damage are well 

represented in the training sample, and 

the results of various models are almost 

identical for both. Using the generalized 

measure of F1, model 1 comes out on 

top. 

 

3. Conclusions 

It has been shown that classification 

models based on deep residual neural 

networks may be used to images of flat 

rolled metal surfaces. You can learn 

more about them right here. In light of 

these results, it seems that the suggested 

models may be used to accurately detect 
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surface problems. Detection is made 

easier when faults have a large enough 

surface area (classes 2 and 3).Class 1 

damage is the most difficult to see 

because of how similar it looks to the 

surface structures that are often 

observed on undamaged specimens. 

Meanwhile, it seems that outcomes for 

damage of type 1 might be greatly 

improved. It is necessary to increase the 

number of images of damage in this 

class's training sample. 

After comparing the outcomes of 

other ResNet models, we discovered 

that 50 layers was the ideal depth for the 

model we created. Simpler models (34 

layers) had poor generalizing 

characteristics, but deeper models had 

superior training performance. However, 

the test results indicated that overfitting 

had occurred (or insufficient training 

sample for complex models). 

For all types of damage, the most 

accurate multilabel classifier was built 

on ResNet50 and achieved a 

classification accuracy of 0.9691. A 

binary loss function and an SGD 

optimizer were used to train the model. 
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