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abstract 

For tasks like design optimization, sensitivity analysis, parameter identification, and controller tuning, which 

can require hundreds or thousands of simulations, the reduction of complex multibody dynamic models remains 

an important topic of investigation, despite the increasing computational power of modern processors. Initially, 

we create a detailed Adams/Car model of a mass-produced SUV. Then, in Maples, we create front and rear 

suspension models called single-link equivalent kinematic quarter-cars (SLEKQ, pronounced "sleek"). All 

suspension connections are combined into one unsprung mass at each corner of the vehicle to reduce the 

computational complexity of including bush ings or kinematic loops. The high-fidelity Adams model is used to 

generate lookup tables or polynomial functions that are then used in the SLEKQ models to simulate the 

kinematic behaviour of a complete suspension model. Each SLEKQ model's capacity to forecast behaviour is 

contingent on the accuracy with which its nonlinear spring and damper parameters, such as the bushings' 

stiffness and damping contributions and the unsprung mass, are accounted for. Parameters that allow for the 

smallest gap between Adams and MapleSim model responses are found through homotropy optimization. Four-

post heave and pitch tests are used to verify the dynamic performance of the SLEKQ models integrated into a 

reduced 10-degree-of-freedom model of the whole vehicle compared to the high-fidelity Adams model. 

 

production 

The methodical development of a minimum 

complicated model that describes the behaviour of 

interest in the original model with enough accuracy 

is a central goal of model reduction approaches [1]. 

This goal is similar to Einstein's famous remark 

that models should be made as simple as feasible, 

but no simpler [2]. Particularly in the design and 

optimization of car suspensions, where bushings 

and kinematic loops lead to stiff or differential-

algebraic equations that may be time-consuming to 

solve, a simplified model can be of great assistance. 

First, we create detailed Adams/Car1 models of a 

production SUV's front MacPherson strut and rear 

semi-trailing-arm multi-link suspensions. Then, we 

use MapleSim2 to create a model of a quarter-car 

with a single equivalent kinematic link (SLEKQ, 

pronounced "sleek"). Suspension links are treated 

as  

a single un sprung mass at each corner of the car, 

similar to the method employed by Charism [3], to 

reduce the computing complexity of the model and 

account for things like bushings and kinematic 

loops. Each SLEKQ model has the same kinematic 

behaviour as the comparable full sus pension 

model, which is a significant improvement over the 

simplistic quarter-car models that have been 

utilized before and give merely approximations of 

the genuine suspension kinematics. The kinematic 

behaviour of each SLEKQ model is defined in this 

study using polynomial functions acquired from the 

high-fidelity Adams model. A benefit of this 

method is that it allows a single multibody model 

to be used to represent a wide variety of suspension 

types by simply modifying the kinematic curves 

and model parameters. Furthermore, rather than 

revising particular hard point localtons, the 

performance implications of shifting the suspension 

curves (such as the connection between camber and 

vertical displacement) may be examined simply by 

tweaking these curves directly in the model. 
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Each SLEKQ model's dynamic performance is 

dependent on the precision of the parameters 

chosen for the nonlinear spring and damper (which 

includes the stiffness and damping contributions of 

the bushings) and the unsprung mass. 

Homotropyoptimization [4], an optimization 

method that aims to prevent convergence to a local 

minimum, is used to determine the parameters that 

minimize the difference between the Adams 

model's response and the Maples model's response. 

This study employs 

homotropy optimization in a manner similar to that 

provided by Vyasarayani et al. [6], and is 

connected to the work of Abarbanel et al. [5]. After 

determining the appropriate values for the SLEKQ 

models' characteristics, a simplified, 10-DOF 

model of the whole vehicle is built and compared 

to the Adams model in terms of its dynamic 

performance. In Section 2, we get a quick rundown 

of how the high-fidelity Adams model came to be. 

In Section 3 we detail the steps used to create the 

SLEKQ model. Parameter optimization for the 

simplified model is discussed in Section 4, and 

Section 5 presents and verifies the resulting 

identification of the model's parameters. In Section 

6, we provide our last thoughts and plans for 

further development. 

Detailed representation of the Adams 

atmosphere 

Adams/Car 2010, a software package often used in 

the automotive industry for simulating vehicle 

dynamics, is used to first construct a high-quality 

complete vehicle model to help in the creation and 

tweaking of the reduced model. Specs and 

measurements from component drawings are used 

to refine the model. As can be seen in Figure 1, the 

production SUV under investigation rides on a 

MacPherson strut up front and a semi-trailing arm 

multi-link setup in the back. 

 

Detailed representation of the Adams/Car model 

fig.1 

Linear rates for the suspension coil springs and 

splines characterizing the response of the dampers 

are calculated based on data from the component 

specifications. Per [7], bushings are modeled as 

linear components with damping rates equal to 1% 

of the linear stiffness rates. Other chassis parts like 

control arms, uprights, and subframes are all 

modeled as rigid bodies with known masses and 

estimated inertias based on material characteristics 

and approximations of component geometry. 

Kinematic equivalent of a quarter-car 

based on a single connection 

MapleSim 5 implements a simplified version of the 

Adams model presented in Section 2. The high-

fidelity model's suspension is replaced with a 

simplified model using a massless suspension joint, 

which is aimed to maintain the same kinematic 

performance as the high-fidelity model (using data 

gained from Adams) while removing all closed 

kinematic chains. To create a scaled-down version 

of the vehicle, the SLEKQ models' specifications 

are first determined. MapleS symbolic m's 

simplification and optimization methods provide 

computationally efficient, dynamic simulation 

code, which is especially useful for parameter 

discovery. For sensitivity analysis, the symbolic 

expressions' capacity to be differentiated might be 

helpful as well. The unsprung mass's orientation (as 

a function of camber, caster, and toe), as well as its 

X and Y displacements, as a function of its vertical 

displacement, may be calculated with the use of 

lookup tables or polynomial functions generated 

using the Adams model. There is usage of 

polynomials of the second and third orders in this 

work. The geometry of the suspension may be used 

to derive these kinematic suspension curves 

experimentally or, in simple circumstances, 

mathematically. The suspension toe angle (around 

the Z-axis) and camber angle establish the first two 

of three body-fixed rotations needed to determine 

the orientation of the unsprung mass (about the 

rotated X 0 -axis). Although the heave motion of 

the suspension may be linked to a change in the 

steering axis, the steering axis definition varies 

across suspension types, making it impossible to 

create a universal function that relates the third 

revolution (around the Y00-axis) to the steering 

axis's orientation. For the validation of the 

rotational kinematics of the SLEKQ model (see 

Figure 2), MapleSim reports the orientation of a 

rigid body using 9 direction cosines; for the 

validation of the translational kinematics, it is a 

simple matter to compare the two sets of data. 

After the SLEKQ model's kinematic behaviour has 

been verified, its dynamic behaviour may be taken 

into account. Finding the spring and damper's base 
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in a coordinate system that is fixed with respect to 

the unsprung mass is the first step. If you want the 

forces created by your spring and damper to be 

applied in the right direction, you need to make 

sure their bases are in the right places. It is also 

necessary to calculate the spring stiffness and 

damping coefficients of efficiency. As this effort 

aims to construct a simpler, computationally 

efficient model, it does not represent the bushings 

separately. Instead, it is necessary to identify the 

spring and damper curves, which include the 

bushing's stiffness and damping effects. The 

 

Verification of front camber, shown in Fig.2 An 

analytical method for determining how much each 

bushing in the SLEKQ model affects the overall 

system behaviour would be prohibitively time-

consuming and inaccurate, making this a perfect 

chance to use a parameter identification technique. 

The damping force is specified by the following 

piecewise linear function: 

 

where v(t) is the velocity of the damper piston, d1 

and d4 are the low-speed bump and rebound rates, 

d2 and d5 define the speeds at which the low- and 

high-speed bump and rebound transition, and d3 

and d6 are the high-speed bump and rebound rates. 

Parameter identicfiction is used to calculate all of 

the coefficients d. The selection of Equation 1 was 

based on its flexibility to include bump and 

rebound damping variances, as well as low and 

high-speed damping differences. For the sake of C 

1 continuity, note that a Bezier curve of second 

order is employed at each transition in Equation 1. 

Here's how we pin down the meaning of spring 

force: 

 

where L is the compression of the spring relative to 

its original length and ki is a set of coefficients. It 

was determined that a polynomial of degree 3 was 

a close enough approximation of the spring curve 

to be useful. The unsprung mass is the last 

unknown in the SLEKQ model. Unsprung mass is 

made up completely of the upright and everything 

outside of it; how much of each control arm and 

drive shaft is sprung or unsprung is unclear. The 

automobile industry is known for using different 

approximations, such as dividing the total mass of 

these parts evenly between the sprung and 

unsprung masses [8]. However, the unsprung mass 

is also determined to increase the precision of the 

simplified model. 

Locating Critical Parameters 

Parameter identification in a mathematical model 

may be thought of as an optimization issue in 

which the goal is to minimize the difference 

between the experimental data and the predicted 

result of the model [9]. The homotropy 

optimization approach [4] was chosen because it 

can maintain convergence to a global minimum 

even when only mediocre initial parameter 

estimations are available (as is the case in this 

work). In addition, parameter identification issues 

for reduced vehicle models [6] and other multibody 

systems [10] have been effectively used to 

homotropy optimization with positive results. 

Coupling a high-gain observer to the motion 

equations is an essential part of the homotropy 

optimization strategy [11]: 

 

where x is the state vector, p is the vector of 

unknown parameters, is the vector of observer 

gains, and e(t) is the vector of time-varying errors 

(the difference between the experimental data and 

the model response). Convergence to a local 

minimum is avoided because of the observer term 

e(t), which smooths the objective function. 

Initially, the observers are completely linked to the 

equations of motion (= 1), which is the starting 

point for the parameter identification procedure. 

When = 1, the gains must be large enough to make 

the mathematical model match the experimental 

data. The method gradually decreases, bringing the 

coupling term down to a more manageable size. 

Then, the ideal parameter values from the previous 

step are used as starting points for optimizing the 

parameters p. This procedure is repeated until = 0, 

at which point the original equations of motion are 

reconstructed. If is small enough, the method will 

provide initial parameter estimations that are near 

to the global optimum, preventing it from falling 

into a local minimum [6]. Figure 3 is a simplified 
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version of the quarter-car model we'll use to 

illustrate how homotropy optimization may be used 

to determine appropriate values for a given set of 

parameters. Next, we will see how the same 

approach may be used with a nonlinear SLEKQ 

model in Section 5. In a kinematics and compliance 

test, the unsprung mass munsp and spring and 

damper behaviour are determined by anchoring the 

sprung mass msp to the ground and applying a 

vertical force FZ (t) at the tire contact patch. We'll 

use an assumption to cut down on the complexity 

of this talk. 

 

An example of a linear mass-spring-damper system 

is shown in Figure 3. 

In Maples mod ell, Equations 1 and 2 explain the 

linear behaviour of the damper and the spring. This 

system of mass, spring, and damper is described by 

the following ordinary differential equation of the 

second order: 

 

in which the damping and stiffness coefficients, d 

and k, respectively. Equation 4 is updated to 

include the homotropy coupling term on the right-

hand side. The forcing term is a PID controller that 

takes the form of an error in location, velocity, and 

acceleration. 

 

where NI, NP, and ND are used to normalize the 

errors and Ze(t), Ze(t), and Ze(t) are the 

experimental location, velocity, and ac celebration 

data we desire to monitor using Equation 4. For the 

mathematical model to accurately reproduce the 

experimental data when = 1, the correct PID gains 

GP, GI, and GD must be found. Figure 4 depicts 

the homotropy coupling term as it is implemented 

in Maples. Matlab3 is used for the parameter 

identification process once the final Maples model 

has been exported as an S-function. The objective 

function is minimized for each value of using the 

mesarch routine [12], which is based on the Nelder-

Mead simplex approach. 

 

 

As shown in Fig. 4, the homotropy coupling term 

has been implemented in Maples. 

where the weights wi are used to calculate z(t), z(t), 

and z(t) from Equations 4 and 5. Using a swept-

sine force input FZ (t) = F0 + 1.0 sin(t) kN, where 

F0 is the corner weight of the vehicle, the high-

fidelity Adams model generates experimental data. 

It is recommended that the input signal have a 

frequency range of 0 Hz to 6 Hz [13] to accurately 

represent the suspension behaviour seen during 

normal freeway driving. To ensure that the smaller 

Maples model has the same ride height as the 

Adams model, the undeformed length of the spring 

is calculated. Milliken and Milliken [8] provide a 

technique to estimating mumps in which the sprung 

and unsprung masses of suspension parts are 

divided evenly. Using the Adams model's 

information on ride rates, a rough approximation of 

the spring curve may be made. To begin with, we 

just use the damper from the Adams model to 

estimate the damper curve since we don't know 

how much of an effect the bushings have on the 

damping properties of the suspension. 

Critical Discussion and Outcomes 

Parameters for two SLEKQ models are identified 

using the homotropy optimization strategy outlined 

in Section 4. One model represents the front 

suspension of the high-fidelity model, while the 

other represents the rear suspension. Figures 5 and 

6 show the models' responses with the initial 

parameter estimates and the final identified 

parameters, while Table 1 lists the homotropy 

coupling gains used by each model. Take note that 

the forward SLEKQ model more closely follows 

the experimental data than the backward one. Two 

characteristics of the rear suspension not captured 

by the current SLEKQ model are to blame for this 

disparity. Specifically, as can be seen in Figure 1, 

the rear damper is not quite as vertical as the front. 

Moreover, the back 
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Figure 5: (a) displacement and (b) unsprung mass 

velocity compared to experimental data and model 

response for front suspension using initial 

parameter estimations. 

Gains in homotropy coupling that were used to 

achieve optimal performance for each SLEKQ 

model are listed in Table 1. 

 

There is a soft bushing connecting the damper to 

the chassis. This combination of characteristics 

causes a substantial longitudinal component in the 

damper force at high piston velocities, which in 

turn deforms the comparatively soft bushing at the 

damper-to-chassis mount, significantly altering the 

system's response. Figure 6 shows that at higher 

frequencies, the experimental data and model 

response diverge, indicating that while the damping 

curve has been discovered, the phenomena cannot 

be recreated exactly. 

Table 2 demonstrates that the measured unsprung 

masses for both the front and rear suspensions fall 

within physically acceptable limits (i.e., between 

0% and 100% of the mass of the suspension links). 

A list of identified parameters for unsprung masses 

is shown in Table 2. 

 

In both circumstances, the suspension links account 

for a significant portion of the mass that is sprung. 

Figure 7 depicts determined spring curves for both 

the front and rear suspensions, showcasing springs 

that are just slightly stiffer than those utilized in the 

Adams high-fidelity model. 

 

Fig. 7. Force-displacement curves for springs in 

Adams and Maples models on (a) front and (b) rear 

suspensions  

The identified damper curves are shown in Figure 

 

Figure 8: (a) front and (b) rear suspension force-

velocity curves from the Adams and MapleSim 

models, respectively. 

The identification process has the same effect in 

both circumstances, making the damper more rigid 

at high speeds. The bump damping (negative 

damper piston speed) of both the front and rear 

suspensions is essentially linear. 

 

The front and rear sus pensions are used to 

construct a comprehensive vehicle model for four-

post testing, validating the parameter identification 

findings in the process. The vehicle's sprung mass 

is represented by a single rigid body to which four 

SLEKQ models are linked. It is expected that the 

existing model is symmetrical in a horizontal plane. 

Since only the heave and pitch movements are 

being studied at the moment, the only other 

parameters in the four-post model are the 

wheelbase, the position of the center of gravity of 

the sprung mass, and the mass and pitch inertia of 

the sprung mass. All of these extra characteristics 

come straight from the high fidelity model. For the 

heave test, the front and rear suspensions are 

excited in phase, whereas for the pitch test, the 

front and rear suspensions are excited 180 degrees 

out of phase. Both use a sinusoidal sweep with a 
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constant velocity of 30 mm/s and a frequency range 

of 0 to 6 Hz. These assessments are run once more 

on the Adams high-fidelity model for the sake of 

comparison. Figure 9 displays the findings, which 

verify that correct parameters have been 

determined for the SLEKQ models.

 

Figure 9: (a) vertical chassis displacement during 

the heave test, and (b) chassis pitch during the pitch 

test, both from four-post validation testing. 

Results and Future Directions 

A massless suspension joint was used in the 

building of a MapleSim model of a quarter-car with 

an analogous kinematic single-link suspension. 

This model's response is identical to that of a 

MacPherson strut front suspension modeled in 

Adams/Car by using homotopy optimization to 

determine the unsprung mass and coefficients for 

the spring and damper curves. It has been shown 

that the simplified model is flexible enough to be 

utilized to simulate the reaction of a semi-trailing-

arm multi-link rear suspension. Using these 

simplified suspension models, we constructed a 

whole car dummy and put it through four-post 

testing to verify the results. Rear suspension's 

relatively soft bushing between the damper and 

chassis calls for more research into how 

compliance might be included into the simplified 

form. We will also look at the chassis's rigidity and 

whether or not the vehicle's assumed lateral 

symmetry holds water. The chassis's roll and yaw 

inertias, as well as its track widths, will be 

determined by conducting roll and warp four-post 

tests. 
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