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Abstract—Data summary for personalised machine learning models for fuel usage should take into account 

distance rather than time, according to this article. This strategy is combined with seven predictors obtained from 

vehicle speed and road grade to develop a highly predictive neural network model for the average fuel consumption 

in large trucks. This method. A fleet's whole fuel consumption may be reduced by using the suggested model, which 

can be devised and implemented for each vehicle individually with ease. Distance travelled is pooled into predictors 

for the model. Fuel consumption may be predicted with a 0.91 coefficient of determination and a mean absolute 

peak-to-peak percent error of less than 4% for routes that contain both city and highway duty cycle segments using a 

1 km window, according to the findings of the study. Index Neural networks; vehicle modelling; fleet management; 

average fuel usage; data summarization. 

INTRODUCTION 

Manufacturers, regulators, and customers all have an 

interest in fuel consumption models for automobiles. 

Every stage of a vehicle's lifecycle necessitates its 

use. During the operation and maintenance phase of 

heavy trucks, we simulate the average fuel 

consumption of these vehicles. Fuel consumption 

models may be divided into three primary groups, 

namely: Understanding the physical system is the 

basis for the development of physics-based models. 

These models use mathematical equations to explain 

the dynamics of the vehicle's components at each 

time step [1], [2]. Models that are data-driven and 

reflect an abstract mapping from a group of 

predictors to the objective outcome, in this instance 

average fuel consumption [3], [4], are called machine 

learning models. It is possible to create statistical 

models that are based on data and that establish a 

relationship between an indicator's probability 

distribution and the desired result. Both [5] and [6] 

may be found. When it comes to cost and precision, 

you'll have to choose one over the other depending on 

your specific needs. We provide a concept for large 

fleets of heavy vehicles that can be readily 

customised for each vehicle's particular needs in this 

article. An efficient fleet manager may use realistic 

models for each vehicle to improve route planning 

for all of the vehicles in a fleet, which ensures that all 

route assignments are aligned to reduce total fleet 

fuel consumption. Road transportation of 

commodities [7], public transit [3], construction 

trucks [8], and waste trucks [9] are all examples of 

these fleets. Methodology has to be applicable and 

adaptable for any fleet, regardless of the wide variety 

of vehicle technology (current and future) and 

configurations. Because of these criteria, machine 

learning is the preferred method when weighing the 

precision sought against the expense of developing 

and adapting a customised model for each vehicle in 

the fleet individually.  
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There have been a number of earlier models for both 

immediate and average fuel usage. Instantaneous fuel 

consumption is best predicted using physics-based 

models [1], [2], which can capture the dynamics of 

the system's behaviour at various time steps. Because 

of the difficulties in recognising patterns in real-time 

data, machine learning algorithms are unable to 

accurately estimate immediate fuel use [3]. These 

models, on the other hand, can accurately detect and 

learn patterns in average fuel usage [4]. Machine 

learning models for average fuel consumption have 

previously used a series of predictors gathered over a 

period of time to forecast the associated fuel 

consumption in terms of either gallons per mile or 

litres per kilometre, depending on the vehicle type. 

The input space of the predictors is quantized with 

regard to a given distance rather than a constant time 

period, but our strategy is still focused on average 

fuel use. An aggregate of all predictors based on a 

fixed window that reflects vehicle travel distance 

provides a superior mapping of input space to output 

space in the proposed model.... However, prior 

machine learning models had to execute a time-to-

distance translation from the input domain to its 

output domain in order to discover patterns in that 

data (i.e., average fuel consumption). Several 

advantages come from keeping the model's input and 

output areas at the same scale: We gather data as fast 

as it has an effect on the result. A vehicle that is 

stopped may gather the same amount of data as a 

vehicle that is moving when the input space is 

sampled with regard to time. Vehicle fuel 

consumption may be predicted based on factors such 

as duty cycle and environmental conditions (e.g., the 

number of stops in an urban traffic over a given 

distance). Fewer predictors with fewer storage and 

transmission bandwidth needs may be derived from 

raw sensor data on-board. Data summarization is best 

done on-board near the source of the data, given the 

rise in processing capability of modern vehicles. 

Additional fuel efficiency improvement may be 

achieved at the vehicle, route, and time of day levels 

using new technologies such as V2I and dynamic 

traffic management [10–12]. In the following 

sections, you will find: Chapters II and III provide 

background information, Chapter IV presents a 

description of the data collection and analysis 

procedures, Chapter V presents the results of 

applying the proposed machine learning model in 

various configurations, and Chapter VI offers 

conclusions and recommendations for future 

research. 

II. RELATED WORK 

Average fuel usage has been modelled using physics-

based, machine learning, and statistical models, as 

previously indicated. These models are based on 

physics-based, comprehensive vehicle simulations 

developed by the EPA and the European Commission 

([1]). When compared to actual flowmeter results, 

these models have an accuracy of 3% in forecasting 

average fuel usage [2]. An extensive development 

effort was required to achieve this degree of 

precision. Statistics processes used under rigorous 

testing settings are at the opposite extreme of the 

modelling spectrum, and they are used to guarantee 

that the reported findings are consistent and 

repeatable. Fuel consumption for new cars may be 

estimated using well-defined statistical techniques for 

particular duty cycles constructed from segments of 

real-world journeys, such as those provided by the 

Code of Federal Regulations [5]. After market 

revisions or changes in operating circumstances, the 

SAE J1321 [6] standard is used to estimate fuel 

consumption for trucks and buses. This standard 

compares the performance of identical vehicles on 

the same route under similar operating circumstances 

based on real-world data. For example, in [13], the 

standard was used to compare the fuel consumption 

of a control car to that of two test vehicles after 

changing lubricating fluids in the engine, gearbox, 

and axle, respectively. Additionally, the standard was 

used in [8] to evaluate the performance of three fuel 

technologies in two coal mine trucks. In several 

studies, the generalizability of machine learning 

models to diverse vehicles and operating situations 

drew researchers to this modelling tool for fuel 

consumption predictions. These models will be 

discussed further in terms of the underlying machine 

learning approach, as well as representations for 

input space and output space, in the next sections of 

this paper. For the objective of simulating fuel use, a 

variety of machine learning algorithms have been 

employed and contrasted. Consider the following 

examples: in [3], [4], and [7], neural networks are 

pitted against each other, whereas neural networks 

are pitted against multivariate regression splines. 

These research have identified a preferred method 

based on their findings. As mentioned in [7] and [14], 

the procedures are equivalent. However, the 

differences between these techniques are minor. 

Differences in data collecting and data summarising 

approaches may be at blame, we suspect. Because 

neural networks operate best with models that have 

continuous input and output variables, that's the 

approach we used in our article. To top it all off, 

neural networks are less vulnerable to noisy data[15]. 

There is also a wide range in the input of previously 

suggested fuel consumption models. Driver 

behaviour, vehicle dynamics, and how the 



21 
 

surrounding environment interact could all be 

included in a comprehensive model. Combinations of 

first, second, third and fourth order vehicle 

acceleration and speed are used in [4] as predictors of 

vehicle performance. Vehicle speed, distance 

travelled, elevation, longitude/latitude and day of the 

week are some of the variables in [3]. Road 

characteristics (e.g., gradient, curvature, and 

roughness) and operational circumstances of the 

vehicle (e.g. speed vehicle, acceleration, gear, and 

percent torque) are taken into consideration in [7]. [8] 

Acceleration, percent torque, and gradient were 

determined to be the most significant predictors in 

this earlier investigation. During data collection, 

vehicle speed was not a factor since it was kept 

almost constant. There were more than 30 factors 

examined in [15], with the wind speed, platooning, 

engine strength, and braking rate being the most 

significant. The road slope, speed, and weight of the 

vehicle were also shown to be significant predictors. 

In [15], the weight of the vehicle was determined 

using its suspension, which is not a conventional 

sensor. Vehicle speed and road slope are also used as 

predictors of the proposed model in this article. Non-

invasive, inexpensive, and generally accessible 

telematics devices can collect these characteristics. 

Different sensor readings that are taken at regular 

intervals are often used as predictors in models [3] 

and [4]. When comparing the accuracy of suggested 

fuel consumption models with regard to input data 

obtained at 1 minute and 10 minute intervals, [15] 

author concluded the 10 minute period generates 

more accurate models. There is a minute-by-minute 

collection of measurements in [7]. Because the trucks 

were travelling at a consistent pace, this amounted to 

gathering input data across a set distance of about one 

mile. For fuel consumption modelling, both [7] and 

[15] appear to indicate that data collection over a 

longer distance is preferable. The values of the 

predictors are aggregated across specified windows 

of journey distance in this article. Additionally, we 

examine how the length of the window affects model 

performance in terms of real-world duty cycles with 

differing vehicle speeds. You may get either the fuel 

rate (liters/hour) or the average fuel consumption 

(liters/100km) from fuel consumption models. Fuel 

rate models are used to anticipate how much fuel a 

vehicle will use at any given time. Because of their 

lack of fine detail, these models are notoriously 

inaccurate (i.e., at the level of each sample). To 

provide a more realistic picture of typical fuel 

consumption, the models take a long-term or long-

distance average of the expected fuel rates. Accuracy 

ranged from 3.73 percent to 6.83 percent from the 

recorded average fuel rate during a whole real-world 

duty cycle when using this method in [4]. [3] utilised 

a similar method and was able to estimate gasoline 

consumption throughout a 365-kilometer journey 

with an accuracy of 2 percent using the model's 

expected fuel rates. In this investigation, the 

correlation between point-wise predicted fuel rates 

and observed fuel rates was found to be poor ( 0.3). A 

model's input and output are both in the time domain 

in each of these investigations. The result of the 

models described in [7] is the ratio of fuel burned to 

the distance travelled. Because the cars in this 

research were all travelling at the same speed at the 

same time, this study was able to accurately sample 

both input and output data. The anticipated fuel usage 

had an average absolute inaccuracy of 3%. An R2 

value over 0.8 indicates that the model described in 

[7] is better equipped to generate point-wise 

predictions than the two previous investigations. 

Some of the difficulties that machine learning models 

experience when their input and output are from 

distinct domains are highlighted in the models 

provided in [15]. Over a period of 10 minutes, the 

input is aggregated and the result is fuel usage for the 

distance travelled during that time period. For a 

typical fuel consumption of 30 l/100km, the root 

mean square error of the anticipated fuel 

consumption was 7.4 l/100km for the whole duty 

cycle. Compared to models that compute the error 

throughout the whole journey, this error, which is 

calculated point-wise for each 10 minute time period, 

is quite significant. 

III. A DIGITAL MODEL USING 

NEURAL NETWORKS 

ANNs, as previously indicated, are often used in the 

development of digital models for complex systems 

(e.g., [4], [16], [17]). A transfer function F(p) = o 

may be used to depict a complicated system, with F() 

standing for the system, p for the input predictors, 

and o for the system response or output. As a result, 

an approximation of the system is provided.

 

F(o) is the prediction model, and o is an estimate of 

the actual output. Model f (p) in (1) is not confined to 

artificial neural networks. Examples include 

employing differential equations [18] or a weight 

matrix generated by support vector machines to 

represent f (p) [19]. Feed Forward Neural Networks 

are the ANNs used in this study (FNN). For example, 

the matrix W, the vectors w, b, and c represent 

adjustable weights, and p is an input vector consisting 

of a collection of predictors that capture the system 

state and are thus considered to be able to reliably 
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forecast o. The nonlinear properties of a complex 

system may be represented using a nonlinear 

activation function () in FNNs rather than linear 

models (e.g., linear regression) (3).

 

To define the model, we use the weight coefficients 

of the following formulas: Wlk = W, Wk = W, Bl = 

B, and Ck = C. In this equation, Wlk = W, Wk = W, 

Bl = B, and Ck = C define the model where Wk = W, 

Wk = W, and Bl = B define the hidden layer. Weights 

are selected such that the discrepancy between the 

system response (o) and the model output (o) is as 

little as possible. In this model, the weights W and w 

determine the connection between a neuron's input 

and output, while the biases Wb and c allow for some 

degree of flexibility in the model. As part of the 

training phase, the network is given a set of 

parameters to operate with. Predictors (p) and outputs 

(o) must be known before to training (o).

 

Ftr and Fts are feature sets (F) that generally include 

two disconnected subsets of input predictors (I) and 

output (O). For the FNN, the weights and biases are 

calculated using the first batch of data, Ftr. 

Validation of the model takes place using the second 

dataset, Fts. That way, even if the input values are 

different from what was seen during the training, the 

model may still generalise. Particle swarm 

optimization [20] and back propagation [21] are two 

methods for training that may be used in conjunction 

with each other. Both approaches are used in this 

study. Various more ways will be investigated in the 

future in order to see whether they can enhance the 

model's capacity to accurately forecast the future. A 

random pair of (input, output) features from Ftr is 

randomly selected for each iteration of training and 

the network's weights are updated accordingly. Using 

the model's anticipated output value and the actual 

output value, the error is calculated (4). This mistake 

is then retransmitted from the network's output layer 

back to its input layer. According to W, w, b, and c, 

the gradient of this mistake is determined as 

illustrated in W. (5).

 

The new weights in W(s) are updated for each 

training iteration step s by adding w (s) l,k as stated 

by (6) to the prior weight value at step s1 according 

to (7). When substituting w (s) l,k with w (s) k, b (s) 

l, and c (s) k, the corresponding values for w (s), b (s) 

l, and c (s) k are obtained in the same way. A model's 

learning rate is controlled by the constants and in (6), 

which are the control parameters. With regard to 

prior training iterations and the direction of gradient 

(5), the constant determines how much weights 

should be added to weights in the direction of that 

gradient.

 

After the model has been trained, it must be validated 

to see whether it can generalise to (input, output) 

characteristics from Fts that were not utilised in the 

training phase.

 

This performance may be assessed using a variety of 

measures applied to the test data. With this numerator 

as the numerator, we get the Coefficient of 

Determination (8), which measures how well our 

model predicts system behaviour in relation to actual 

system behaviour. In order to get the denominator, 

subtract the actual responses from the system's mean 

responses. The machine learning model's projected 

reaction and the system's actual point-wise response 

are both represented by the coefficient of 

determination (CD). Accurate point-by-point 

predictions are indicated by CD values near to 1. 

Point-wise forecasts are less accurate when the value 

is near to zero or negative. The CD may have a value 

ranging from -infinity to one. 
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Furthermore, the mean absolute error (MAE) as 

indicated in (9) [23] and the mean absolute peak-to-

peak percent error (MAP Epk) as shown in (10) are 

used to assess the model's accuracy in addition the 

coefficient of determination.

 

In Fts, N is the total number of test points, It was 

found that MAP Epk was preferable than MAP E 

(Mean Absolute Percent Error) because it avoids 

biassing and unsymmetrical outcomes when oi is near 

to oi. Model prediction errors are measured using 

MAE, whereas MAP Epk presents these errors as a 

percentage of the greatest potential prediction errors. 

Additionally, the RMSE (11) is supplied where it is 

appropriate. All of the chosen measures assess the 

model's performance on a point-by-point basis rather 

than cumulatively over the course of a journey. 

Predictors' relative relevance is determined by 

comparing their weight (IW) with other model inputs, 

as specified in (13) [22].

 

It was necessary to alter the measure above to 

accommodate for input characteristics using a broad 

range of methods. The paper's corrected IW metric is 

provided by 

 

in where p l is the mean value of the input feature pl 

throughout the test data set Fts; AIWl is a measure of 

how much excitation the input feature (pl) provides 

the network's first layer in comparison to other input 

features. An estimate of the feature's importance may 

be found here. Excitation of low AIW features may 

have a considerable impact on output of the model as 

it propagates through its buried layer. 

DATA COLLECTION AND 

SUMMARIZATION 

An 8-ton truck with an estimated mass of 8,700 kg is 

used to create the model, which is based on the duty 

cycles of that vehicle's shifts in Indianapolis. Serial 

control and communications in heavy-duty vehicle 

networks were implemented in accordance with the 

SAE J1939 standard [24]. Good or poor conduct was 

questioned of 12 drivers on two separate routes. If 

you're driving well, you anticipate the need to brake 

and let the car do the rest. The distribution of drivers 

and routes is not homogeneous throughout the data 

set since some drivers participated more than others. 

3 302 890 data points sampled at 50 Hz from the 

vehicle CAN bus were produced during this field test, 

which included 56 excursions of varied lengths 

totaling 778.89 km in total distance travelled. The 

majority of the journeys were between 10 and 15 

kilometres long. From the field duty cycles picked at 

random, synthetic duty cycles were assembled to 

enhance the number of points of data collection. As a 

result, distinct sets of data are generated for training 

(Ftr) and testing (Fts) segments, with one set of 

drivers assigned to each. 

Model Predictors 

The model's predictors required a number of 

processing steps. Road grade and transmission output 

speed are used to create these predictions. 

Downsampling of the road grade and calculating 

vehicle speed from the trans mission output speed 

were the initial steps in the processing. An on-board 

inclinometer was used to measure the road gradient, 

which was then down-sampled to 1 Hz. The data also 

demonstrated that the vehicle speed and transmission 

output speed have a linear connection, as shown in 

the following equation: A moving average low pass 

filter was used to minimise noise in the variable, and 

the variable was down-sampled from 50 Hz to 1 Hz 

to further reduce noise. Creating the synthetic duty 

cycles was the goal of the second processing phase. It 

was for this reason that data from actual vehicle stops 

was used to partition the duty cycles collected 

(Figure 1). All of the study's twelve drivers provided 

a total of 455 actual data segments. The training data 

set (Ftr) was derived from 358 segments received 

from nine drivers, while the testing data set (Fts) was 

derived from 97 segments obtained from the 

remaining three drivers in the research.
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Sample genuine duty cycles are shown in Fig. 1. 

(top). Real data segments 24, 8, 79, and 14 were 

concatenated to construct this synthetic duty cycle 

(bottom). 

To construct a synthetic duty cycle, genuine data 

segments are sampled and concatenated until a total 

distance of 15 kilometres is attained. The 15-

kilometer route was chosen to reflect the actual paths 

used during data collecting in the field. An average of 

five segments is required to generate 15 kilometres of 

data, according to a study. As you can see in Figure 

1, we were able to produce a synthetic duty cycle via 

the use of this method. When segments were 

combined in the manner described above, the 

resulting vehicle speed was constant. However, as 

illustrated in Figure 2, road grade discontinuities 

were found between segments. Based on the selected 

window, these duty cycles are then averaged over a 

predetermined trip distance (x). For each data set and 

window size studied in this research, the total number 

of data points (i.e. windows) and total distance are 

shown in Table I. Predictors for the proposed model 

are generated as the last stage in the input data 

processing. Using the speed and gradient of the road, 

these predictors are computed for each window. • 

amount of stops, • time spent in a halting state

 

Experiment with a three-segment duty cycle, as seen 

in Figure 2. The duty cycle was designed to maintain 

a constant pace for the vehicle. It's possible that road 

conditions or gasoline prices may change. 

For the training (F(x)tr) and testing (F(x)ts) data sets, 

the number of data points (I.E., WINDOWS), as well 

as the total distance between the data points, is shown 

in Table I. (I.E., 1, 2, AND 5 km.)

 

Average speed, characteristic acceleration, and 

aerodynamic speed squared are all terms used to 

describe this phenomenon. 

 

• kinetic energy shift and 

Potential energy shifts as a result ofSince these 

variables are thought to reflect both vehicle dynamics 

and the driver's behavioural patterns and the route's 

influence on goal output, they were chosen for 

inclusion in this study (i.e., fuel consumption). It has 

previously been shown that the characteristic 

acceleration (16) and aerodynamic speed squared 

(18) may be used to predict a vehicle's total fuel 
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consumption for a certain duty cycle. According to 

this research, the effect of aerodynamics on fuel 

consumption is best captured by calculating 

aerodynamic speed squared from the vehicle's 

characteristic acceleration and the inertia work 

required to accelerate the vehicle [25].

 

This is the total distance between a vehicle and the 

window and which represents the vehicle's speed at 

successive intervals ti and ti+1, respectively, where g 

is the gravitational constant. According to this 

equation, the elevation difference between two points 

on the same road is equal to the distance travelled 

between the two points, divided by the road grade at 

each point in time (in this case, the road grade at time 

ti+1). 

 

 

where ti,i+1 represents the study's set sampling 

interval of one second. On the basis of this fact, the 

starting expression (18) presented in [25] was 

reduced to the approximation displayed in order to 

decrease the amount of on-board computing required 

for v 2 aero (19).

 

To the aforementioned predictors in [25], which aim 

to capture the vehicle's transient dynamics, we added 

two more predictors that track changes in the 

vehicle's average dynamics over the course of a given 

window. According to (20) and (21), these predictors 

are the change in kinetic and potential energy (CKE 

and CP E), respectively. 

 

There is a constant in this research, m, the mass of 

the vehicle, and v1 and vN are the vehicle speeds at 

which the vehicle is travelling at the beginning and 

end of this window.

 

 

Due to the very small amount of total energy spent by 

the vehicle, it is critical to monitor the vehicle's 

kinetic and potential energy changes over the duty 

cycle. The amount of fuel energy that is converted to 

kinetic and/or potential energy decreases as the 

distance travelled increases. 

Model Output 

Each window's average fuel consumption in l/100km 

represents the model's output. The CAN bus is used 

to get fuel consumption data for the average 

consumption. Discontinuities in the fuel rate are 

noticed from one segment to the next, as is the case 

with road grade and synthetic duty cycles produced 

from a random selection of genuine duty cycle 

segments (Figure 2). Because the fuel rates are 

averaged throughout the whole window, these 

discontinuities have no effect on the model's result 

(i.e., average fuel consumption). Data gathered on the 

road has shown that average fuel usage for all 

journeys varies by section. There was a 20% 

variation in fuel usage between excellent and poor 

drivers on en-tire journeys. The average fuel usage 

varies widely depending on the size of the window, 

as well. For the 1, 2, and 5 km windows, Table II 

displays the mean and standard deviation of the 

average fuel usage for all journeys. Standard 

deviation decreases as window size rises, despite the 

fact that the mean fuel consumption across all 

windows remains roughly constant. All of the 

proposed model's input characteristics are generated 

from the vehicle speed and the road grade, which are 

recorded at a rate of 1 Hz. A telematics device may 

provide the data needed to calculate this information. 

These findings are the result of this research. 

TABLE II MEAN AND STANDARD 

DEVIATION OF AVERAGE FUEL 

CONSUMPTION OVER 1, 2, AND 5 km 

WINDOWS IN THE REAL DATA. THE LAST 

ROW OF THE TABLE SHOWS THE 

AVERAGE FUEL CONSUMPTION FOR ALL 

THE TRIPS 
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CAN bus sensor readings were used to create 

variables. As the data source and sample frequency 

change, so does the model's accuracy. The model's 

accuracy is also dependent on the output feature's 

precision. According to the Might bus, fuel 

consumption can be inaccurate by as much as 5 

percent [26]. There is a greater degree of precision 

that may be achieved using flowmeters. Flowmeters, 

on the other hand, are more costly. In [7] and [15], as 

well as in this article, gasoline consumption values 

obtained from the CAN bus were used, as were high 

precision fuel sensors. It will be investigated in the 

future how the data sources are accurate. 

MODEL VALIDATION 

The neural network model is fed by the seven 

predictors given in Section IV. The initial layer of the 

network is made up of this. An additional hidden 

layer of five neurons receives the input from the top 

layer. A single neuron feeds the output player from 

the hidden layer. Three models with window widths 

of 1, 2 and 5 km are shown in Figure 3 with the 

RMSE (11) during training. The RMSE values for 

each data point in the top plot are based on the 

model's performance after training on 500 windows. 

Using this figure, we can see that the RMSE of all 

models is less than 0.2 l/100km. The models' rates of 

convergence, on the other hand, vary. Although at 

first it seems to start out at 0.16l/100km after 500 

training windows, the model's RMSE drops to 

0.08l/100km after it has reached its convergence 

point. For the 1 km model, the values are 0.34 

l/100km and 0.14 l/100km, respectively. As shown in 

Table II, aggregating input and output data over 5 km 

provides a stable profile for the fuel consumption of 

the vehicle over the routes, and this profile does not 

necessitate extensive learning. This trend is further 

supported by a difference in standard deviation of the 

average fuel consumption for the 1 km and 5 km 

windows This conclusion is in line with other 

research. When it comes to estimating fuel usage, 

extended route segments for small cars in 

metropolitan locations are more accurate than shorter 

ones, according to [14]. In a prior survey, 64 percent 

of the excursions were less than 5 kilometres in 

length. It was shown that data collection over 10 

minute intervals was more accurate than data 

collection over 1 minute intervals in [15]. The longer 

the data collecting period, the more likely it is that 

fuel usage and distance travelled will have a linear 

connection. Despite the fact that this method provides 

a decent estimate of typical fuel use,

 

 

For window widths of 1, 2 and 5 km, there was a 

significant decrease in the RMSE throughout the 

training procedure. Long-distance fuel usage may not 

match point-wise expected values when RMSE is 

plotted (top) against the number of window groups 

with 500 consecutive windows per group (bottom).
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FIGURE 4: Fuel usage throughout the first 100 

kilometres from Fts, predicted vs real, broken down 

into one-kilometer and five-kilometer windows 

(bottom). 

For the first 100 kilometres of the test data set (Fts), 

fuel consumption for window widths of 1 km and 5 

km is shown in Figure 4 to demonstrate this 

tendency. Per-window tracking is easier using the 1 

km model, which is more accurate than the 2 km 

model. When comparing anticipated and actual fuel 

use, the same conclusion was reached, as shown in 

Figure 5. Figures 4 and 5 show the findings.Models 

trained using the training data set (Ftr) in Table I are 

listed here. As a comparison of the point-wise 

prediction performance for changing window widths, 

five alternative models are trained

 

Figure 5 compares the predicted fuel consumption 

(left) with the actual fuel consumption (right) for the 

whole test data set during the 1 km and 5 km 

windows (right). 

neural network with random starting values for the 

weights. Five training/testing cycles for each window 

size yielded these five performance measures (Ta ble 

III). Table III shows the standard deviation for each 

of the five runs in parentheses underneath the metric's 

performance value. Stable models may be inferred 

from the standard deviations shown here. 

TABLE III PREDICTIVE ACCURACY OF THE 

FUEL CONSUMPTION MODELS FOR 1, 2 

AND 5 km AGGREGATION WINDOWS 
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Overall, the 1 km model performs better than the 

other two window widths in all measures, according 

to Table III of the results It has been previously 

stated that the performance metrics measure the 

model's performance in terms of points. An accuracy 

of 0.91 in the 1 km model's coefficient of 

determination (CD) shows that the model can 

accurately predict fuel usage over that distance. The 

CD lowers in size as the window size grows. The 

suggested model outperforms [3], [7] in terms of 

MAE and CD, despite the inclusion of high-precision 

fuel sensors in [3]. Modelling errors are also smaller 

than in [15], with an average difference of of 0.025 

l/100km. However, the test distance employed in this 

article is greater than that used in [15]. The smaller 

the RMSE, the better. Fuel consumption accuracy for 

the models is likewise within the MAP Epk values 

stated in [4]. This study compares the actual vs. 

projected error at the window level, while [4] reports 

the error for the full journey. According to Table III's 

performance measures, the suggested models seem to 

be utilising highly predictive input characteristics and 

that these features are properly translated to the 

output space of the model. Table IV summarises the 

AIW values of the predictors in order to better 

appreciate their contributions. 

TABLE IV ADJUSTED INFLUENCE OF 

WEIGHTS (AIW ) FOR TR THE PREDICTORS 

IN THE PROPOSED MODEL 

 

 

As the window size rises, the relevance of the 

number of stops and the stop duration increases. 

Because there are fewer pauses in the 1 km window 

compared to the 2 or 5 km windows, this is to be 

anticipated. Other than those, all of the predictors 

show strong AIW across all window widths. 

Predictive accuracy was reduced by removing any of 

these predictors. As window widths rise, the model 

depends less on vehicle dynamics and more on events 

linked to the distance travelled to estimate fuel 

consumption, as seen by the increase in AIWs for 

number of stops and stop duration, as well as the drop 

in AIWs for the remaining predictors. The two novel 

predictors suggested in this article, according to Ta 

ble IV, contribute to fuel consumption prediction in a 

similar way as typical acceleration and aerodynamic 

speed [15], as well as the average moving speed [25]. 

CONCLUSION 

Using machine learning, this article constructed a 

model for every heavy vehicle in a fleet. There are 

seven variables that make up the model: number of 

stops, the duration of each stop, the average speed, 

the typical acceleration of the vehicle, and the change 

in kinetic and potential energy, respectively. This 

research introduces two more predictors to better 

represent the vehicle's average dynamic behaviour. 

Speed and grade are used to determine the model's 

predictors. Telematics devices, which are 

increasingly becoming an intrinsic feature of 

automobiles with internet connectivity, may provide 

quick access to these data. In addition, these two 

variables make it simple to calculate the predictors 

while travelling. Predictions from the model are 

averaged across a predetermined distance travelled 

(i.e., window) rather than a predetermined time 

period. Machine learning models for fuel 

consumption with an RMSE of less than 0.01l/100km 

were created by mapping the input space to the 

distance domain, which matches with the goal output. 

Models with 1, 2, and 5 km windows were tested. For 

precision, the 1 kilometre window is the best option. 

This model has a CD of 0.91 and can accurately 

forecast fuel usage on a per-kilometer basis. For 

complete long-distance excursions, this model's 

performance is more in line with physics-based 

models, and it outperforms earlier machine learning 

models. The cost of the model in terms of data 

collection and on-board computation should be taken 

into account when selecting a window size. 

Furthermore, the size of the window is likely to vary 

depending on the programme. It is advised to use the 

1 km window for fleets with short journeys (e.g., 

construction trucks inside a site or urban traffic 

routes). A 5 kilometre window may be enough for 
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long-haul fleets. It was found that the 1 km window 

was better suited to the duty cycles in this research 

since they included both highway and city traffic. 

Identifying these distinct elements and determining 

the optimal window size will be the focus of future 

effort. The model is being extended to include other 

types of automobiles, such as those with changing 

mass or older models. It will be necessary to include 

predictors for these features in order to account for 

the effect on fuel consumption that changes in 

vehicle mass and wear have. Aside from this, future 

research will investigate the minimum distance 

necessary for training each model, as well as the 

frequency of online training in order to ensure that a 

model's prediction accuracy is maintained. 
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