

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

https://zenodo.org/records/14720381

57

A COMPREHENSIVE GUIDE TO IMPROVE ANGULAR

APPLICATIONS PERFORMANCE THROUGH SERVER-SIDE

RENDERING (SSR)

Banda Saikumar

American Airlines Inc, USA

saikumar.banda@gmail.com

Abstract– The research emphasises the way Angular

Universal brings in a different approach to

improving performance and SEO in Angular

applications with the use of Server-Side Rendering

(SSR). The page load times are significantly

improved, thus improving FCP and TTI with SSR.

Improvement is witnessed through better indexing of

search engines and more exposure and visibility of

the content as for SEO. It solves state management

challenges by applying lazy loading, pre-rendering

and state transfer to ensure seamless integrations

between client and server. The optimum best

practices involve caching, pre-rendering, and

efficient treatment of states. The trend for the future

can be that performances can increase along with

SEO and developments in web technology, including

integrating HTTP/2 and service workers at a larger

scale.

Keywords: State Management, Server-Side

Rendering, Best Practices, Angular Universal, SEO

I. Introduction

Performance is a significant component that

influences user engagement and retention in current

web development. Most SPAs that include most

Angular applications-suffer from poor loading time

that are not SEO-friendly. Problems are solved by

SSR, doing its job right on the server rather than on the

client. This makes the load time of the very first page

load much quicker, improving the performance of

SEO. Angular Universal is the official solution to

Angular, enabling SSR to let the system serve its pages

effectively from the server [1]. The effect of applying

SSR to an Angular application using Angular

Universal is discussed with respect to the performance

and optimisation of the search engine.

II. Aims and Objective

The main aim of this study is to assess the influence of

Server-Side Rendering (SSR) using Angular

Universal on performance and SEO in Angular apps.

● To investigate best practices for using SSR

with Angular Universal to improve Angular

application speed and user experience.

● To identify and overcome the issues

associated with the implementation of SSR in

Angular apps, such as state management and

server-side rendering complications.

● To assess the influence of Server-Side

Rendering (SSR) on performance indicators

such as Time to First Paint and Time to

Interactive.

● To assess the SEO advantages of adopting

SSR in Angular apps, with an emphasis on

increased search engine indexing and content

exposure.

III. Research Questions

● What are the best practices for integrating

SSR with Angular Universal to improve

Angular application performance and user

experience?

● What challenges occur during the

deployment of SSR in Angular apps,

particularly those involving state

management and server-side rendering

complications, and how can they be

addressed?

● What influence does Server-Side Rendering

(SSR) have on important performance

indicators like Time to First Paint and Time

to Interactive?

● What SEO benefits can SSR offer for

Angular apps, specifically in terms of

http://www.ijmece.com/
https://zenodo.org/records/14720381
mailto:saikumar.banda@gmail.com

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

https://zenodo.org/records/14720381

58

boosting search engine indexing and content

visibility?

IV. Research rationale

The problem in Angular application development

involves performance constraints on SPAs. Most

SPAs suffer from their slow loading times and bad

SEO performance. These are very adverse that hamper

user engagement and limit the visibility of the search

engine. Slowing down the loading of pages reduces

user experience, translating to a high bounce rate. It’s

hard for search engines to index dynamic content for

better discoverability. Challenges are addressed by

SSR that renders content on the server, thereby

improving both performance and SEO [2]. This

research explores the way SSR can be used to optimise

Angular applications and provide a solution for these

common issues.

V. Literature Review

Best Practices for Implementing SSR with Angular

Universal to improve Application Speed and User

Experience

Implementing Server-Side Rendering (SSR) with

Angular Universal needs following best practices to

provide maximum speed and user experience. A

number of good practices, such as by lazy loading the

modules-meaning, load in the time of required-help

decrease an application’s loading time. Those can

generally be useful techniques that have been

considered for enhancing perceived performance. The

benefit offered by Angular Universal is due to dividing

the application into smaller modules to prioritise

rendering important components for better page load

[3]. Other best practices for this are to do with server-

side caching whereby caching the already rendered

HTML content at the server itself saves lots of

headaches getting it rendered for the same page many

times. This speeds up not only response times but also

reduces the number of requests to the server, thereby

improving its scalability.

Fig 1: Server-Side Rendering (SSR)

 Users can serve cached contents much faster and

speed up page loading and another helpful technique

in this regard is pre-rendering. Pre-rendering basically

lets a developer statically generate HTML at the build

time for certain routes [4]. This is very useful for

content that rarely changes, while the user gets faster

page loads without having to rely on server-side

rendering for each request. Another important aspect

of SSR is the state transfer between the server and the

client. Angular Universal supports the transferring of

application state from the server to the client. The

client-side app takes off where the server-side

rendering can have left off. Proper state management

ensures that a seamless transition can be effected sans

glitches like superfluous re-renders.

Challenges in Implementing SSR in Angular

Applications and Solutions for State Management

and Server-Side Rendering

Most of the challenges related to SSR in Angular

applications concern state management and the

process of rendering itself. One basic challenge is that

of state management. The application state can be

properly synchronized between the server and the

client in functional server-side rendering [5]. Most

Angular applications rely on various client-side

services or APIs to manage state, ensuring this state

transfer is properly done during SSR can prove quite

challenging. The client-side app can fail to pick up

where the server-side rendering left off, leading to

inconsistent behaviour in the time of there is no proper

mechanism for state transfer.

http://www.ijmece.com/
https://zenodo.org/records/14720381

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

https://zenodo.org/records/14720381

59

Fig 2: Server-Side Rendering (SSR) in Angular

Universal

Complications can occur with server-side rendering

and Angular applications are targeted for client-side

execution, complications can arise in the time an

application needs to be set up for SSR. Components

and services relying on browser-specific APIs cannot

work on the server. For example, functionalities that

have to do with manipulating the window or document

cannot be executed on the server. This is left to the

developer to make sure works by implementing

workarounds or conditional logic. Complications can

increase development time and complexity. Other

challenges can be mitigated by the application of state

transfer techniques made available through Angular

Universal [6]. It makes an application’s state

serializable on the server enabling seamless hydration

at the client. One can be allowed to employ Universal-

friendly API respect to Browser-dependent code for

better handling at the client and server-side.

Influence of Server-Side Rendering on Performance

Metrics such as Time to First Paint and Time to

Interactive

Most of the important performance metrics, including

Time to First Paint (FCP) and Time to Interactive

(TTI), are considerably improved by SSR. Time to

First Paint (FCP) is explained by the fact that SSR

makes sure a fully rendered HTML is returned from

the server to the client on the very first request.

Performance metrics can be combined with lazy

loading for even more optimisation [7]. The user has

to wait for JavaScript download and execution before

the application becomes visible with client-side

rendering. This rapid, or immediate, feedback that the

user gets enhances a user’s overall perceived

experience by the reduction of perceivable load time.

SSR also impacts Time to Interactive besides

improving FCP and the HTML content is there almost

instantaneously, and the client can start making the

page interactive with the SSR. The execution of client-

side JavaScript can happen parallel to the user already

interacting with the page that has been rendered in the

meantime [8]. The application reaches a full

interactive state sooner that reflects on the whole

performance metrics. It loads those resources that are

actually needed, whereas the rest of the components

get loaded afterwards.

SEO Benefits of Adopting SSR in Angular

Applications for Enhanced Search Engine Indexing

and Content Visibility

The use of Server-Side Rendering in Angular

applications can help a lot in improving SEO issues

greatly, providing better indexing for search engines

and making website content more perceivable. Classic

SPAs are not friendly for search crawlers because of

their reliance on client-side rendering. Search engines

cannot index dynamic content generated by JavaScript

that reduces web page findability [9]. The challenge is

SSR that delivers complete HTML to the client

browser. This makes it much easier to crawl and index

by whatever search engine’s crawlers or spiders.

The initial HTML delivered to the client already

contains all the relevant content that search engines are

bound to index such a page more accurately due to

SSR. This readily available content helps improve

search engine rankings. The search engines have

something to index-complete content of the web page

can start getting ranked much higher in results.

Server-Side Rendering (SSR) can improve click-

through rates since users are presented with

completely rendered results in search that general user

experience is likely to increase [10]. It does a much

better job in the time it comes to dealing with meta tags

and dynamic content that is deemed crucial for better

Search Engine Optimisation. Meta tags relating to

titles, descriptions and keywords are considered

critical in terms of ranking and categorising content.

http://www.ijmece.com/
https://zenodo.org/records/14720381

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

https://zenodo.org/records/14720381

60

VI. Methodology

Fig 2: Methodology of the Research

This research follows an interpretivism philosophy, a

deductive approach, and utilizes secondary data with

qualitative thematic analysis. Each one of them is

selected in a manner that enables the research to

explore and interpret in detail the impact SSR causes

on the performance of Angular applications in relation

to SEO. Interpretivismphilosophy focuses on

meaning, human behaviour, and common phenomena.

Interpretivism can help explore both the subjective

experience that developers hold and interpret more

accessible data relating to the implications of SSR

[11]. It is actually not to investigate the way much the

performances have risen but, instead, to try to

ascertain the agents and practices causing this very

success in Angular apps. The approach is important in

helping the research understand the way existing

practices, studies and challenges interpret SSR.

The Deductive approach tests the pre-existing theory

or hypotheses and the research is based on the way

SSR improves metrics such as FCP and SEO in

Angular applications. The deductive approach adopted

in this study is deductive, where the researcher tries to

confirm or refute ideas presented in the existing

literature [12]. This can be a step-by-step examination

of exactly the way SSR can affect those particular

areas through secondary data sources. Secondary data

are preferred as they tend to be of the highest value for

information related to the implementation and

outcome of SSR.

Secondary sources also include published research

papers, industry reports, case studies, and technical

documentation, where there can be comprehensive

analyses without necessarily having to collect the data

from the field. These are easily available and give

insights into the various project’s implementations,

performance benchmarks of SSR and its subsequent

outcomes on SEO performance. Secondary data can be

practical to collect, most especially on such issues as

SSR because so much study and reporting have been

done. The secondary data can be analysed by using

Qualitative thematic secondary data analysis. An

approach can outline patterns and themes in textual

data that can enable the researcher to gain necessary

knowledge from literature and case studies. Thematic

analysis as a method can allow broad insight into the

issues of SSR affecting performance and SEO, not

relying on numerical data only [13]. It is expected that

the research can be in a position to provide detailed

information on challenges, solutions and best practices

related to SSR in Angular applications by analysing

qualitative data.

VII. Data Analysis

Theme 1: Best Practices are examined to determine

successful techniques for combining SSR with

Angular Universal to increase application

performance and user experience.

It is to revisit the best practices to implement

successful techniques in the process of integrating

SSR with Angular universal for improved application

performance and enhanced user experience. Lazy

loading is a technique that an application loads only

that can be needed on the initial load [14]. Translating

reduces the general quantum of JavaScript results in a

much speedy application for any end user using it.

Lazy loading also optimises the performance both on

the server and client side, minimising useless data

transfers and allowing an application to focus

resources on critical resources.

Another great strategy that works in performance is

the pre-rendering approach. It generates static HTML

for a set of routes at build time, so that opening the

page it’s ready to serve. This pre-rendering can be very

effective, especially for static or less dynamic content,

as the content hardly changes. It reduces the server’s

http://www.ijmece.com/
https://zenodo.org/records/14720381

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

https://zenodo.org/records/14720381

61

load by not having to render the pages every time there

is a request to the server. Another best practice in SSR

is state transfer. Angular Universal enables the

application state to be transferred from the server to

the client, the client-side application can continue

from where the server-side rendering stops [15].

Proper management of state can prevent issues related

to re-rendering or loss of data at the client side,

resulting in a very smooth user experience.

Theme 2: The challenges are discussed with an

emphasis on difficulties such as state management

and server-side rendering complexities

experienced during SSR implementation in

Angular apps.

Challenges are discussed with an emphasis on

difficulties such as state management and server-side

rendering complexities experienced during SSR

implementation in Angular apps. The biggest

challenge is the way to handle the state. Angular

applications depend on some client-side services and

APIs as far as keeping the state of an application is

considered [16]. It is necessary that the application

state can be rightly synchronized between the server

and client while doing SSR. The client-side

application cannot be able to continue with the page

served by the server without a good mechanism of

state transfer. This causes inconsistent behavior or

problems in user experience.

 The application on the client side can fail to continue

from the page the server has rendered without a good

mechanism of state transfer. A big challenge is the

complexity of the server rendering since by design

Angular applications are supposed to run at the client-

side [17]. Some browser-specific features and APIs,

like window and document, do not work on the server.

Hydration can be a bit problematic and the client has

to “take over” the page after the server renders it for

the first time by hydrating the HTML with JavaScript.

First render happens to differ from the server-rendered

page, discrepancies and visual glitches can occur. This

cannot happen upon proper synchronisation and state

management for seamless transitions from SSR into

client-side rendering.

Theme 3: Performance impact is evaluated,

especially the way SSR affects critical metrics such

as Time to First Paint and Time to Interactive.

The SSR performs great regarding Time to First Paint

since it sends fully rendered HTML from the server. It

measures performance impact and especially the way

well SSR does on critical metrics such as Time to First

Paint and Time to Interactive. It reduces the time the

user has to see something on the screen, hence

improving perceived performance. Client-side

rendering requires the browser to download and

execute JavaScript before content rendering that

delays what is shown to the user versus FCP [18]. The

content is pre-rendered on the server that means the

user can see content sooner with server-side rendering.

Another point of impact SSR has on TTI is that it

makes the page so much more interactive and a lot

faster. The initial HTML content is rendered on the

server, the browser can run JavaScript concurrently

with the user interacting with the already-rendered

content. That means interaction can be way faster

compared to client-side rendered applications that

have to wait for JavaScript to load and execute before

the page is interactive. Improved TTI directly

enhances the user experience by reducing wait time.

The technology can be able to introduce a few other

famous performance optimization techniques out

there, including lazy loading and pre-rendering [19].

This is one way of speeding these FCPs and TTIs by

introducing a small amount of JavaScript on the

starting page. Faster and wider load times-and, making

resource loading for optimisations of Angular can

create impressive responsive instances and engage

many users for extra time with SSR in place.

Theme 4: SEO benefits are explored, with a focus

on the way SSR adoption enhances search engine

indexing, content exposure, and overall search

visibility for Angular apps.

SEO benefits are explored in ways SSR adoption

increases the indexing of search engines, exposure of

content, and general visibility for Angular

applications. SSR enables search engines to crawl and

index fully rendered HTML content coming from a

server with ease. Most search engines find it hard to

index dynamic content that needs the execution of

JavaScript in client-side rendering. It has already

displayed the content that is more accessible to search

engine crawlers in the case of SSR by the time it has

loaded the page. The visibility of content is highly

enhanced because all Meta tags, titles, and

descriptions are immediately crawled and indexed by

search engines in SSR [20]. The page becomes more

relevant for various search algorithms and takes a

higher rank in SERPs. SSR has a direct influence on

the process of search engine optimisation by

embedding critical metadata into initial server-

rendered HTML. Another important area where SSR

http://www.ijmece.com/
https://zenodo.org/records/14720381

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

https://zenodo.org/records/14720381

62

provides benefits is in search visibility. Web

applications are more likely to appear in relevant

searches with search engines now able to index

complete pages much better [21]. This improved

indexing increases the likelihood of better organic

rankings that bring more traffic to the website. This

also helps with rich snippets since the structured data

and metadata can already be there for the search

engines to interpret.

VIII. Future Directions

Angular applications keep optimising performance

and further improve SEO outcomes in the future.

Angular Universal can integrate with more advanced

features in server-side rendering as web technologies

continue to evolve. Angular Universal can lead to even

more fluid and responsive web applications, even for

complex dynamic content [22]. Another promising

development can happen at the integration point with

the emergent standards of the web. SSR frameworks

are also finding a way to utilise those features for far

better performance as newer technologies like HTTP/2

and service workers get more widespread adoption.

IX. Conclusion

The above data concludes SSR boosts performance

and SEO of an application in Angular. The

performances include improved page load times for

faster and superior interactivity on the SEO side,

superior indexing, and superior exposure of your

content, and high rankings in search engines. Most of

the challenges, including state management and

several rendering complexities, are tackled through

techniques like lazy loading, pre-rendering, and state

transfer. Best practices can optimise SSR integration

including caching and state management. Future

directions show even more optimisation with

developing web technologies.

References

[1] Chandler, T., Shroff, H., Oldenbourg, R. and La

Rivière, P., 2020. Spatio-angular fluorescence

microscopy III. Constrained angular diffusion,

polarized excitation, and high-NA imaging. Journal of

the Optical Society of America. A, Optics, image

science, and vision, 37(9), p.1465.

[2] Jartarghar, H.A., Salanke, G.R., AR, A.K.,

Sharvani, G.S. and Dalali, S., 2022. React apps with

Server-Side rendering: Next. js. Journal of

Telecommunication, Electronic and Computer

Engineering (JTEC), 14(4), pp.25-29.

[3] Araujo, I.F., Park, D.K., Petruccione, F. and da

Silva, A.J., 2021. A divide-and-conquer algorithm for

quantum state preparation. Scientific reports, 11(1),

p.6329.

[4] Ballamudi, V.K.R., Lal, K., Desamsetti, H. and

Dekkati, S., 2021. Getting Started Modern Web

Development with Next. js: An Indispensable React

Framework. Digitalization & Sustainability Review,

1(1), pp.1-11.

[5] Ioana, A. and Korodi, A., 2020. Improving OPC

UA publish-subscribe mechanism over UDP with

synchronization algorithm and multithreading broker

application. Sensors, 20(19), p.5591.

[6] Lim, Y.W., Tan, W.S., Ho, K.L., Mariatulqabtiah,

A.R., Abu Kasim, N.H., Abd. Rahman, N., Wong,

T.W. and Chee, C.F., 2022. Challenges and

complications of poly (lactic-co-glycolic acid)-based

long-acting drug product development.

Pharmaceutics, 14(3), p.614.

[7] Aslanpour, M.S., Gill, S.S. and Toosi, A.N., 2020.

Performance evaluation metrics for cloud, fog and

edge computing: A review, taxonomy, benchmarks

and standards for future research. Internet of Things,

12, p.100273.

[8] Iskandar, T.F., Lubis, M., Kusumasari, T.F. and

Lubis, A.R., 2020, May. Comparison between client-

side and server-side rendering in the web

development. In IOP Conference Series: Materials

Science and Engineering (Vol. 801, No. 1, p. 012136).

IOP Publishing.

[9] Samarasinghe, N. and Mannan, M., 2021. On

cloaking behaviors of malicious websites. Computers

& Security, 101, p.102114.

[10] Nordström, C. and Dixelius, A., 2023.

Comparisons of Server-side Rendering and Client-side

Rendering for Web Pages.

[11] Pervin, N. and Mokhtar, M., 2022. The

interpretivist research paradigm: A subjective notion

of a social context. International Journal of Academic

Research in Progressive Education and Development,

11(2), pp.419-428.

http://www.ijmece.com/
https://zenodo.org/records/14720381

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

https://zenodo.org/records/14720381

63

[12] Hall, J.R., Savas-Hall, S. and Shaw, E.H., 2023.

A deductive approach to a systematic review of

entrepreneurship literature. Management Review

Quarterly, 73(3), pp.987-1016.

[13] Teo, K.J.H., Teo, M.Y.K., Pisupati, A., Ong,

R.S.R., Goh, C.K., Seah, C.H.X., Toh, Y.R., Burla, N.,

Koh, N.S.Y., Tay, K.T. and Ong, Y.T., 2022.

Assessing professional identity formation (PIF)

amongst medical students in Oncology and Palliative

Medicine postings: a SEBA guided scoping review.

BMC Palliative Care, 21(1), p.200.

[14] Turcotte, A., Gokhale, S. and Tip, F., 2023,

September. Increasing the Responsiveness of Web

Applications by Introducing Lazy Loading. In 2023

38th IEEE/ACM International Conference on

Automated Software Engineering (ASE) (pp. 459-

470). IEEE.

[15] Steiner, A.M., Lissel, F., Fery, A., Lauth, J. and

Scheele, M., 2021. Prospects of coupled organic–

inorganic nanostructures for charge and energy

transfer applications. Angewandte Chemie

International Edition, 60(3), pp.1152-1175.

[16] Iskandar, T.F., Lubis, M., Kusumasari, T.F. and

Lubis, A.R., 2020, May. Comparison between client-

side and server-side rendering in the web

development. In IOP Conference Series: Materials

Science and Engineering (Vol. 801, No. 1, p. 012136).

IOP Publishing.

[17] Boutsi, A.M., Ioannidis, C. and Verykokou, S.,

2023. Multi-Resolution 3D Rendering for High-

Performance Web AR. Sensors, 23(15), p.6885.

[18] Iskandar, T.F., Lubis, M., Kusumasari, T.F. and

Lubis, A.R., 2020, May. Comparison between client-

side and server-side rendering in the web

development. In IOP Conference Series: Materials

Science and Engineering (Vol. 801, No. 1, p. 012136).

IOP Publishing.

[19] Abdolrasol, M.G., Hussain, S.S., Ustun, T.S.,

Sarker, M.R., Hannan, M.A., Mohamed, R., Ali, J.A.,

Mekhilef, S. and Milad, A., 2021. Artificial neural

networks based optimization techniques: A review.

Electronics, 10(21), p.2689.

[20] Kostagiolas, P., Strzelecki, A., Banou, C. and

Lavranos, C., 2021. The impact of Google on

discovering scholarly information: managing STM

publishers’ visibility in Google. Collection and

curation, 40(1), pp.1-8.

[21] Nagpal, M. and Petersen, J.A., 2021. Keyword

selection strategies in search engine optimization: how

relevant is relevance?.Journal of retailing, 97(4),

pp.746-763.

[22] Motevaselian, M.H. and Aluru, N.R., 2020.

Universal reduction in dielectric response of confined

fluids. ACS nano, 14(10), pp.12761-12770.

http://www.ijmece.com/
https://zenodo.org/records/14720381

