

 ISSN 2321-2152

 www.ijmece.com

 Vol 12, Issue 2, 2024

https://zenodo.org/records/14505682

1738

ECG Task Performance Tuning and IoT Data Compression

Optimization Through Dynamic-Deep Learning

Dr.Krishna Mekala1, Professor1, Department of ECE, Siddhartha Institute of Technology & Sciences,

Telangana, India

Dr.Nittala Swapna Suhasini2, Professor2, Department of CSE, Siddhartha Institute of Technology &

Sciences, Telangana, India.

Abstract—

Monitoring scientific records, e.g., Electrocardiogram (ECG)

signals, is a not unusual place utility of Internet of Things

(IoT) devices. Compression techniques are frequently

implemented at the big quantities of sensor records generated

previous to sending it to the Cloud to lessen the garage and

transport fees. A lossy compression gives excessive

compression gain (CG), however may also lessen the overall

performance of an ECG utility (downstream task) because of

facts loss. Previous works on ECG tracking cognizance both

on optimizing the sign reconstruction or the task`s overall

performance. Instead, we recommend a self-adapting lossy

compressSion answer that permit configuring a favoured

overall performance stage at the downstream obligations

whilst retaining an optimized CG that reduces Cloud fees. We

advise Dynamic-Deep, a task-conscious compression geared

for IoT-Cloud architectures. Our compressor is skilled to opti

mize the CG whilst retaining the overall performance

requirement of the downstream obligations selected out of a

huge variety. In deployment, the IoT part tool adapts the

compression and sends an optimized illustration for every

records segment, accounting for the downstream task`s

favored overall performance with out counting on comments

from the Cloud. We behaviour an intensive assessment of our

method on not unusual place ECG datasets the usage of

famous ECG applications, which incorporates coronary heart

rate (HR) arrhythmia type.

INTRODUCTION

Internet of Things (IoT) devices are widely used to

monitor and send sensor data to the Cloud for

centralized storage and execution of downstream

tasks. For example, hospitals use IoT medical

devices to constantly monitor Electrocardiogram

(ECG) signals, the patient heart’s activity over

time. Several downstream tasks make use of ECG

signals: For alerting the staff of HR arrhythmias

[19] or extracting indicative features (e.g., R-R

peaks [22]) for the purpose of heart disease

diagnostics

Fig. 1: Typical architecture of a modern IoT-based medical

monitoring system with data compression.

TABLE I: Evaluate HR arrhythmia classification

and reconstriction tasks on 602 test segments after

compression.

Such medical monitoring settings generate large

amounts of continuous sensor data to be sent to the

Cloud. Transmitting the raw signal would imply

power-hungry devices and high processing and

storage Cloud costs. Therefore, an effective data

compression scheme is required to reduce the

transmission and storage requirements. An efficient

compression module is typically deployed on the

device to accommodate settings with low power

resource-limited IoT devices, while a

decompression module is deployed in the Cloud.

Compression gain (CG) is usually used to evaluate

such data compression schemes by calculating the

division sizes of the original representation against

the compressed representation. Fig. 1 presents an

end-to-end data flow in a Cloud-based monitoring

system: compressed data segments are prepared for

transmission, and the data is decompressed back to

raw ECG signal in the Cloud for further processing

and analysis.

RELATED WORK

Existing compression strategies had been tailored

into clinical IoT environments, generally to in

shape the low energy requirements [21], [8]. Such

techniques are break up into lossless [23] and lossy

[8] categories. Lossless achieves low CG on

signals, together with ECG [16], whilst lossy

compression is pretty green (in decreasing garage

requirements), and therefore in shape for IoT

sensing. Transform-primarily based totally

compression. A not unusual place method for lossy

compression is rework-primarily based totally,

http://www.ijmece.com/
https://zenodo.org/records/14505682

 ISSN 2321-2152

 www.ijmece.com

 Vol 12, Issue 2, 2024

https://zenodo.org/records/14505682

1739

which seeks to keep the essential components of

the sign`s illustration withinside the trans fashioned

area. Few exquisite examples are Fourier rework

[20], Wavelet rework [3] or the Cosine rework [1],

every with its very own area transformation

preference. The trans fashioned illustration of ECG

records is frequently sparse, and therefore retaining

the proper components of the illustration allows

one to get a reconstruction sign of probably

excessive fidelity [8], [4]. In [21] a suggestion for a

dynamic scheme that adopts the brink at the

illustration length is cautioned. The essential

disadvantage of the rework-primarily based totally

method is the usage of a predefined area

transformation, which won't cause the best CG for

the favoured reconstruction level. Neural network

(NN) primarily based totally compression. NNs

automate the procedure of trying to find a finest

area transformation for the compressed illustration.

Auto-Encoders (AE), an own circle of relatives of

NNs, had been appreciably studied [14], [12] and

proven to efficiently research an expressive-yet-

green illustration of ECG segments, and therefore

offer a better CG than rework primarily based

totally compression techniques [21].

Recent work [24] makes use of a convolutional AE

with 27 layers to obtain SOTA compressSion

results. In general, AE architectures have an

unmarried constant compression level, and

therefore are restrained withinside the manageable

CGs. Variable-charge compression. Recent works

cautioned NN architectures with a couple of

compression ranges permit balancing among CG

and reconstruction quality [6] [2]. However, they

require to outline earlier a charge manipulate

parameter. Aditonally, they consciousness their

assessment on reconstruction quality, therefore

there may be no assure on downstream

responsibilities overall performance. Whereas

Dynamic-Deep is tuned to a favoured downstream

responsibility` overall performance and optimizes

CG for every records section robotically in place of

guide parameter changes.

MOTIVATION FOR BALANCING CG

AND DOWNSTREAM TASKS

PERFORMANCE

 Lossy compression methods, such as SOTA CAE

[24], are based on an architecture with a single

fixed compression level. However, a fixed

compression level may not necessarily satisfy a

desired bound on the task’s error for every data

segment. Fig. 3 presents the CCE quartiles across

ECG tested segmints for different compression

levels: 64, 32, 16 and none. (See section VI-A for

details on the task and dataset used). Denote Coax

as an extended SOTA CAE implementation with a

CG of xx, and let CAE0 represent no compression.

We note that non zero losses may occur in

uncompressed operations due to the inherent error

of the HR detection model. Let an example

scenario be when the admin bound the HR

arrhythmia classification loss (CCE) to 0.75, none

of the fixed compressors can satisfy this bound for

all segments, as shown in Fig. 3. To meet the

bound of 0.75 we can apply an approach of 2-

compression levels by combining a single

compressor and no compression. For instance, with

a single compressor CAE32, 75% of data segments

meet the upper bound, hence the rest 25% remain

non compressed. Such a setting yields an average

CG of 24. Additionally, we can leverage higher CG

as long as those meet the upper bound error of

desired downstream task. For instance, CAE64

meets the upper bound for approximately more

than 70% of data segments. Therefore, increasing

to 3-compression levels allows more compression

possibilities with potential of higher CG. Back to

the example meeting the bound of 0.75,

approximately 75% of data segments can be

compressed with a high CG of 64 or 32 while the

rest 25% remain uncompressed, reaching higher

CG of 48.31.

DYNAMIC-DEEP HIGH-LEVEL

DESIGN

To receive feedback from the downstream tasks,

we propose a solution that extends the classical

CAE architecture with multiple compression levels

in a task-aware fashion. DynamicDeep consists of

the following (as shown in Fig. 2):

Compression Module:

set of encoders that compress every raw data

segment into multiple compression level

representations. To reduce the need for actual

feedback from the downstream tasks, we employ a

dense layer trained to predict the downstream

tasks’ weighted error for each compression level.

We choose the highest

Fig. 2: Categorical cross entropy loss quartiles for HR

arrhythmiaMia classification over test ECG data segments (of

size 602) feasible CG based on the pre-configured upper bound

error and the feedback prediction.

http://www.ijmece.com/
https://zenodo.org/records/14505682

 ISSN 2321-2152

 www.ijmece.com

 Vol 12, Issue 2, 2024

https://zenodo.org/records/14505682

1740

 Decompression Module:

set of decoders that accept multiple representations

of different compression levels and reconstruct the

data segment. For optimizing the joint performance

of downstream tasks and reconstructed tasks, the

training phase requires differenttable downstream

tasks (e.g., NN-based). Nonetheless, after the

training phase, the reconstructed signal (from the

pretrained compressor) allows executing additional

downstream tasks not necessarily differentiable.

We found a low correlation between reconstruction

error and downstream tasks’ error (see Section V-

D). We therefore designed Dynamic-Deep to

predict the downstream tasks’ error rather than the

reconstruction error as a proxy for the error

feedback.

 DYNAMIC-DEEP

IMPLEMENTATION DETAILS

 A. Multiple Compression Levels The following

architectural changes were made to extend the

CAE32 to support 3-compression levels (64, 32 or

no compression). We chose 3-compression levels

based on experiments comparing the performance

(and footprint) of different numbers of compression

levels, including CAE16. We obtained the highest

impact with 3-compression levels (Full

implementation details in [10]). Denote conv(a,b)

as a convolutional layer with x number of filters,

kernel size of y, and Up sample(z) as an up-sample

layer with size z. To support CG of 64,

convolutional layers conv(64,7) and conv(1,3) were

added after CAE32 encoder’s layer number 12,

yielding an output shape of (31,1). A decoder

adapter transforms the compressed representton of

64 to input the CAE32’s decoder. The adapter has

four layers: conv(16,7), conv(32,3), Up sample(2),

conv(32,3), Up sample(2) with an output size of

(124,32). The output of the adapter is the input of

layer 18 in CAE32. Each compressed

representation has its dense layer supporting the

downstream tasks’ prediction. The dense layer’s

output shape is (1,1) with a REL activation.

 Minimizing Memory Footprint for IoT

Support

Deploying compressing modules on lightweight

IoT devices requires a resource-constrained

implementation. We use twoencoders to support 3-

compression levels, which results in a 1.06MB

memory footprint for the extended SOTA CAE.

We use several techniques to reduce the model’s

memory size:

Deep learning compression techniques:

 The number of learnable parameters of the CAE’s

10th layer is reduced by decreasing the number of

filters and kernel size. We compensate and preserve

compression performance by preserving the

receptive field using convolutional layers with

stride=2 instead of pooling layers [5]. Note that the

encoder’s 10th layer is used in all compression

levels.

Sharing layers:

 Each encoder (CAE32, CAE64) shares the same

learnable parameters;therefore, memory and

computation are reused to avoid linear memory

increase for each compression level [13]. Only the

last encoder’s layers of each compression level are

computed uniquely. Table II summarizes the

resulting memory size when applying the above

techniques. It decreases the number of parameters

to only 84K parameters which are 67% fewer

parameters to the straightforward 3-compression

level CAE’s encoder.

 Combined Loss Function

Dynamic-Deep has three loss functions

accumulated to a combined loss function. The

reconstruction loss LR, calculates the distance

between each sample in the original data segment

X and the reconstructed data segment Xˆ over M

samples.

The downstream task weighted error Law,

accumulates the downstream tasks’ loss functions.

Let it denote task I, and Lit and wi denote its loss

function and the weighted (scaling) factor of the

loss function, respectively.

The combined loss function Lc, combines the

reconstruction loss LR with the downstream tasks’

weighted error Lw. w0 scales the LR to balance

between reconstruction performance and

downstream tasks performances.

Finally, Dynamic-Deep learns to predict Lw using

the mean squared error (MSE).

 Training

We observe a low correlation between the tested

downstream tasks and the reconstruction errors

across a wide range of the weighting factors wi (see

tech report [10]). TABLE II: Compression

Module’s Memory minimization

http://www.ijmece.com/
https://zenodo.org/records/14505682

 ISSN 2321-2152

 www.ijmece.com

 Vol 12, Issue 2, 2024

https://zenodo.org/records/14505682

1741

Hence, training a downstream task in isolation on

the reconstructed signal may result in limited

performance. We thus train Dynamic-Deep in three

phases, where the second phase is repeated for each

additional downstream task. First, we train the

compressor to optimize the reconstruction task (see

eq. (1)). Here, we use the MIT-BIH dataset by

applying the preprocessing described in [24].

Second, we fine-tune with cascaded downstream

tasks loss, including reconstruction loss (see eq.

(3)). The downstream tasks’ models’ weights are

frozen and trained for additional 20 epochs with the

CinC dataset by applying the preprocessing

described in [19]. Finally, training the dense layer

to predict the downstream tasks’ weighted error for

additional 10 epochs. As before, the compressor is

frozen to not penalize previous training phases.

EXPERIMENTAL RESULTS

Datasets and Downstream Tasks Datasets:

 used for training and evaluation:

 • MIT-BIH [17]: used to evaluate ECG

compression as it includes different types of noise

patterns and various shapes of arrhythmic QRS

complexes [15]. The benchmark contains 48 half-

hour ambulatory ECG recordings yielding a data

set comprising 4.8K ECG data segments.

• CinC [7]: Captured from the AliveCor ECG

monitor and contains about 7K records with 8960

samples each. These records are annotated by

medical experts to the following classes: Atrial

Fibrillation(AF), noise, other rhythms or normal.

The test set has 602 data records where 40% are

abnormal events. Training set has 5.4K records.

Downstream tasks: (NN based) architectures were

chosen:

• HR arrhythmias classification: implemented using

convolutional NN (CNN) [19] as a classification

task. The ground truth (GT) of this task uses labels

from the CinC dataset. Those labels are annotated

by medical experts.

 • R-R peak extraction(RPnet): implemented using

NN [22] as a regression task locating the position

in time of the peak. The GT of this task (i.e. R-R

peaks on raw ECG) is generated by running the

RPnet NN on the raw ECG signals offered by the

CinC dataset. Then each compression level is

evaluated relatively to the GT. Both are commonly

used tasks in real-world ECG applications.

Task Awareness Evaluation

 We focus our evaluation on the Dynamic-Deep

downstream tasks’ predictions performed by the

dense layer in the compression module. We

compare our predictions against two theoretical

models, in which the downstream task feedback is

available for the compressor:

1) 2-level feedback-aware: the method has 2-

compression levels of 64 or 1 (act as a lower

bound).

3-level feedback-aware: the method has 3-

compression levels of 64, 32 or 1 (act as an upper

bound).

Each model executes the downstream tasks for

every data segment and measures the error at each

compression level. Then, they choose the highest

compression that meets the configured upper bound

error. If none meets the upper bound, the no

compression level is chosen. Note that such a

method is not applicable in typical IoT settings

since the feedback is not readily available at the

edges. We evaluated Dynamic-Deep vs. the

theoretical models above considering the following

setups:

Single downstream task awareness:

http://www.ijmece.com/
https://zenodo.org/records/14505682

 ISSN 2321-2152

 www.ijmece.com

 Vol 12, Issue 2, 2024

https://zenodo.org/records/14505682

1742

of HR arrhythmia classification or R-R peak

extraction. Fig. 4 shows that Dynamic-Deep

follows the trends of the theoretical method

successfully. Increasing the upper bound error

increases the CG and the effective task loss and

vice versa. For every configured upper bound

DynamicDeep results with a lower effective task

loss than the configured upper bound. Lastly, there

is an improvement in CG for both tasks when

increasing the number of compression levels from

2 to 3 (more details in [10]).

Multiple downstream tasks’ awareness:

 of both R-R peak extraction and HR arrhythmia

classification. Supporting multiple downstream

tasks introduces a tradeoff on downstream task

optimization. Dynamic-Deep uses a downstream

task weighted error (see eq. 2), which can be

viewed as a single task awareness. This setup

achieves similar results as single downstream task

awareness (see tech report for demonstrations

[10]). Higher CG than 64 improved the theoretical

feedback-aware up to an average CG of 100,

however, Dynamic-Deep had low performance

utilization of those levels (Full experimental results

in tech report [10]).

Fig. 3: Yearly cost expenses compression comparison

Cloud Cost Reduction Analysis Using

Dynamic-Deep

Optimizing CG in IoT settings has a direct impact

on reducing storage costs and networking

bandwidth. For Cloud costs evaluation, we consider

storage and computation (to account data

decompression) costs since Cloud inbound traffic is

usually free. We compare the following operational

models:

1) Dynamic-Deep: IoT device sends a compressed

representation to the Cloud side, where it is stored,

or decompressed to allow downstream tasks’

execution.

Dynamic-Deep with uncompressed: IoT device

sends both compressed and uncompressed

representations.

The compressed representation is stored while

downstream tasks operate on the uncompressed

representation. We assume that a domain expert

reviews some portion of x% of historical sensor

data, and accounts for the corresponding overhead,

the cost of fetching data from storage and

decompressing it, in both models. We ran these two

models on Google Cloud Platform [11] using ECG

data segment traffic equivalent to a small-mid

hospital (200 beds). We configured the upper

bound error of HR arrhythmia classification to be

0.75 and received an average CG of 48.31. We

measured the computation expenses of our setup on

an N1-Custom instance with 1 CPU, 2GB RAM,

Intel Xeon 2.2GHz. Fig. 5 presents the measured

results. Lossless compression reduces expenses by

63% regardless of the specific architecture due to

its low computation usage. Dynamic-Deep with

uncompressed architecture saves up to 97% cost

expenses compared to no compression solution and

is more efficient than lossless even with 100% data

fetching.

CONCLUSION

We provided a self-tailored lossy compression

structure appropriate for IoT networks that permit

tuning ECG downstream duties` performances and

optimize the procedure of compacting ECG

statistics segments the usage of a variable-charge

compression. The IoT tool learns to expect the

downstream challenge blunders to permit in

structured capability from Cloud services. We

efficiently confirmed CG enhancements on styles

of downstream duties in opposition to a SOTA

CAE. Additionally we confirmed the technique

permits the practitioner to stability among favored

overall performance and compression benefit as a

result additionally controlling Cloud costs. Future

paintings will amplify the implementations to

different domains. Acknowledgment - We thank

Guy Vinograd from bio-T for his comments, and

deeply thankful to Elad Levy for his treasured

comments on version layout and analysis.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine

transform,” IEEE transactions on Computers, vol. 100, no. 1,

pp. 90–93, 1974.

[2] M. Akbari, J. Liang, J. Han, and C. Tu, “Learned variable-

rate image compression with residual divisive normalization,”

in 2020 IEEE International Conference on Multimedia and

Expo (ICME). IEEE, 2020, pp. 1–6.

 [3] J. Chen, S. Itoh, and T. Hashimoto, “Ecg data

compression by using wavelet transform,” IEICE

TRANSACTIONS on Information and Systems, vol. 76, no.

12, pp. 1454–1461, 1993.

[4] A. F. Cheng, S. E. Hawkins III, L. Nguyen, C. A. Monaco,

and G. G. Seagrave, “Data compression using chebyshev

transform,” 2007.

http://www.ijmece.com/
https://zenodo.org/records/14505682

 ISSN 2321-2152

 www.ijmece.com

 Vol 12, Issue 2, 2024

https://zenodo.org/records/14505682

1743

 [5] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of

model compression and acceleration for deep neural

networks,” arXiv preprint arXiv:1710.09282, 2017.

[6] Y. Choi, M. El-Khamy, and J. Lee, “Variable rate deep

image compression with a conditional autoencoder,” in

Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2019, pp. 3146–3154.

 [7] G. D. Clifford, I. Silva, B. Moody, Q. Li, D. Kella, A.

Shahin, T. Kooistra, D. Perry, and R. G. Mark, “The

physionet/computing in cardiology challenge 2015: reducing

false arrhythmia alarms in the icu,” in 2015 Computing in

Cardiology Conference (CinC). IEEE, 2015, pp. 273–276.

 [8] H. Djelouat, A. Amira, and F. Bensaali, “Compressive

sensing-based iot applications: A review,” Journal of Sensor

and Actuator Networks, vol. 7, no. 4, p. 45, 2018.

[9] O. Dovrat, I. Lang, and S. Avidan, “Learning to sample,”

in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019, pp. 2760–2769.

 [10] A. B.-B. Elad Wasserstein, Eli Brosh, “Dynamic-deep

tech-report,” 2022. [Online]. Available:

https://cutt.ly/bvekoKD

 [11] Google. Machine types,compute engine documentation,

google cloud. [Online]. Available:

cloud.google.com/compute/docs/machine-types

 [12] R. Goroshin and Y. LeCun, “Saturating auto-encoders,”

arXiv preprint arXiv:1301.3577, 2013.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression:

Compressing deep neural networks with pruning, trained

quantization and huffman coding,” arXiv preprint

arXiv:1510.00149, 2015.

 [14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks,” science, vol.

313, no. 5786, pp. 504–507, 2006.

 [15] S. Hong, Y. Zhou, J. Shang, C. Xiao, and J. Sun,

“Opportunities and challenges of deep learning methods for

electrocardiogram data: A systematic review,” Computers in

Biology and Medicine, p. 103801, 2020.

[16] A. Koski, “Lossless ecg encoding,” Computer Methods

and Programs in Biomedicine, vol. 52, no. 1, pp. 23–33, 1997.

 [17] R. Mark and G. Moody, “Mit-bih arrhythmia database

directory,” Cambridge: Massachusetts Institute of Technology,

1988.

[18] R. Pinkham, T. Schmidt, and A. Berkovich, “Algorithm-

aware neural network based image compression for high-

speed imaging,” in 2020 IEEE International Conference on

Artificial Intelligence and Virtual Reality (AIVR). IEEE, 2020,

pp. 196–199.

 [19] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn,

and A. Y. Ng, “Cardiologist-level arrhythmia detection with

convolutional neural networks,” arXiv preprint

arXiv:1707.01836, 2017.

[20] B. S. Reddy and I. Murthy, “Ecg data compression using

fourier descriptors,” IEEE Transactions on Biomedical

Engineering, no. 4, pp. 428–434, 1986.

 [21] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot data

compression: Sensoragnostic approach,” in 2015 Data

Compression Conference. IEEE, 2015, pp. 303–312.

http://www.ijmece.com/
https://zenodo.org/records/14505682
https://cutt.ly/bvekoKD

