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Abstract— 

Monitoring scientific records, e.g., Electrocardiogram (ECG) 

signals, is a not unusual place utility of Internet of Things 

(IoT) devices. Compression techniques are frequently 

implemented at the big quantities of sensor records generated 

previous to sending it to the Cloud to lessen the garage and 

transport fees. A lossy compression gives excessive 

compression gain (CG), however may also lessen the overall 

performance of an ECG utility (downstream task) because of 

facts loss. Previous works on ECG tracking cognizance both 

on optimizing the sign reconstruction or the task`s overall 

performance. Instead, we recommend a self-adapting lossy 

compressSion answer that permit configuring a favoured 

overall performance stage at the downstream obligations 

whilst retaining an optimized CG that reduces Cloud fees. We 

advise Dynamic-Deep, a task-conscious compression geared 

for IoT-Cloud architectures. Our compressor is skilled to opti 

mize the CG whilst retaining the overall performance 

requirement of the downstream obligations selected out of a 

huge variety. In deployment, the IoT part tool adapts the 

compression and sends an optimized illustration for every 

records segment, accounting for the downstream task`s 

favored overall performance with out counting on comments 

from the Cloud. We behaviour an intensive assessment of our 

method on not unusual place ECG datasets the usage of  

famous ECG applications, which incorporates coronary heart 

rate (HR) arrhythmia type.  

INTRODUCTION  

Internet of Things (IoT) devices are widely used to 

monitor and send sensor data to the Cloud for 

centralized storage and execution of downstream 

tasks. For example, hospitals use IoT medical 

devices to constantly monitor Electrocardiogram 

(ECG) signals, the patient heart’s activity over 

time. Several downstream tasks make use of ECG 

signals: For alerting the staff of HR arrhythmias 

[19] or extracting indicative features (e.g., R-R 

peaks [22]) for the purpose of heart disease 

diagnostics 

 

Fig. 1: Typical architecture of a modern IoT-based medical 

monitoring system with data compression.  

TABLE I: Evaluate HR arrhythmia classification 

and reconstriction tasks on 602 test segments after 

compression. 

 

Such medical monitoring settings generate large 

amounts of continuous sensor data to be sent to the 

Cloud. Transmitting the raw signal would imply 

power-hungry devices and high processing and 

storage Cloud costs. Therefore, an effective data 

compression scheme is required to reduce the 

transmission and storage requirements. An efficient 

compression module is typically deployed on the 

device to accommodate settings with low power 

resource-limited IoT devices, while a 

decompression module is deployed in the Cloud. 

Compression gain (CG) is usually used to evaluate 

such data compression schemes by calculating the 

division sizes of the original representation against 

the compressed representation. Fig. 1 presents an 

end-to-end data flow in a Cloud-based monitoring 

system: compressed data segments are prepared for 

transmission, and the data is decompressed back to 

raw ECG signal in the Cloud for further processing 

and analysis. 

RELATED WORK  

Existing compression strategies had been tailored 

into clinical IoT environments, generally to in 

shape the low energy requirements [21], [8]. Such 

techniques are break up into lossless [23] and lossy 

[8] categories. Lossless achieves low CG on 

signals, together with ECG [16], whilst lossy 

compression is pretty green (in decreasing garage 

requirements), and therefore in shape for IoT 

sensing. Transform-primarily based totally 

compression. A not unusual place method for lossy 

compression is rework-primarily based totally, 
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which seeks to keep the essential components of 

the sign`s illustration withinside the trans fashioned 

area. Few exquisite examples are Fourier rework 

[20], Wavelet rework [3] or the Cosine rework [1], 

every with its very own area transformation 

preference. The trans fashioned illustration of ECG 

records is frequently sparse, and therefore retaining 

the proper components of the illustration allows 

one to get a reconstruction sign of probably 

excessive fidelity [8], [4]. In [21] a suggestion for a 

dynamic scheme that adopts the brink at the 

illustration length is cautioned. The essential 

disadvantage of the rework-primarily based totally 

method is the usage of a predefined area 

transformation, which won't cause the best CG for 

the favoured reconstruction level. Neural network 

(NN) primarily based totally compression. NNs 

automate the procedure of trying to find a finest 

area transformation for the compressed illustration. 

Auto-Encoders (AE), an own circle of relatives of 

NNs, had been appreciably studied [14], [12] and 

proven to efficiently research an expressive-yet-

green illustration of ECG segments, and therefore 

offer a better CG than rework primarily based 

totally compression techniques [21].  

Recent work [24] makes use of a convolutional AE 

with 27 layers to obtain SOTA compressSion 

results. In general, AE architectures have an 

unmarried constant compression level, and 

therefore are restrained withinside the manageable 

CGs. Variable-charge compression. Recent works 

cautioned NN architectures with a couple of 

compression ranges permit balancing among CG 

and reconstruction quality [6] [2]. However, they 

require to outline earlier a charge manipulate 

parameter. Aditonally, they consciousness their 

assessment on reconstruction quality, therefore 

there may be no assure on downstream 

responsibilities overall performance. Whereas 

Dynamic-Deep is tuned to a favoured downstream 

responsibility` overall performance and optimizes 

CG for every records section robotically in place of 

guide parameter changes. 

MOTIVATION FOR BALANCING CG 

AND DOWNSTREAM TASKS 

PERFORMANCE 

 Lossy compression methods, such as SOTA CAE 

[24], are based on an architecture with a single 

fixed compression level. However, a fixed 

compression level may not necessarily satisfy a 

desired bound on the task’s error for every data 

segment. Fig. 3 presents the CCE quartiles across 

ECG tested segmints for different compression 

levels: 64, 32, 16 and none. (See section VI-A for 

details on the task and dataset used). Denote Coax 

as an extended SOTA CAE implementation with a 

CG of xx, and let CAE0 represent no compression. 

We note that non zero losses may occur in 

uncompressed operations due to the inherent error 

of the HR detection model. Let an example 

scenario be when the admin bound the HR 

arrhythmia classification loss (CCE) to 0.75, none 

of the fixed compressors can satisfy this bound for 

all segments, as shown in Fig. 3. To meet the 

bound of 0.75 we can apply an approach of 2-

compression levels by combining a single 

compressor and no compression. For instance, with 

a single compressor CAE32, 75% of data segments 

meet the upper bound, hence the rest 25% remain 

non compressed. Such a setting yields an average 

CG of 24. Additionally, we can leverage higher CG 

as long as those meet the upper bound error of 

desired downstream task. For instance, CAE64 

meets the upper bound for approximately more 

than 70% of data segments. Therefore, increasing 

to 3-compression levels allows more compression 

possibilities with potential of higher CG. Back to 

the example meeting the bound of 0.75, 

approximately 75% of data segments can be 

compressed with a high CG of 64 or 32 while the 

rest 25% remain uncompressed, reaching higher 

CG of 48.31. 

DYNAMIC-DEEP HIGH-LEVEL 

DESIGN  

To receive feedback from the downstream tasks, 

we propose a solution that extends the classical 

CAE architecture with multiple compression levels 

in a task-aware fashion. DynamicDeep consists of 

the following (as shown in Fig. 2):  

Compression Module:  

set of encoders that compress every raw data 

segment into multiple compression level 

representations. To reduce the need for actual 

feedback from the downstream tasks, we employ a 

dense layer trained to predict the downstream 

tasks’ weighted error for each compression level. 

We choose the highest 

 

Fig. 2: Categorical cross entropy loss quartiles for HR 

arrhythmiaMia classification over test ECG data segments (of 

size 602) feasible CG based on the pre-configured upper bound 

error and the feedback prediction. 
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 Decompression Module:  

set of decoders that accept multiple representations 

of different compression levels and reconstruct the 

data segment. For optimizing the joint performance 

of downstream tasks and reconstructed tasks, the 

training phase requires differenttable downstream 

tasks (e.g., NN-based). Nonetheless, after the 

training phase, the reconstructed signal (from the 

pretrained compressor) allows executing additional 

downstream tasks not necessarily differentiable. 

We found a low correlation between reconstruction 

error and downstream tasks’ error (see Section V-

D). We therefore designed Dynamic-Deep to 

predict the downstream tasks’ error rather than the 

reconstruction error as a proxy for the error 

feedback. 

 DYNAMIC-DEEP 

IMPLEMENTATION DETAILS 

 A. Multiple Compression Levels The following 

architectural changes were made to extend the 

CAE32 to support 3-compression levels (64, 32 or 

no compression). We chose 3-compression levels 

based on experiments comparing the performance 

(and footprint) of different numbers of compression 

levels, including CAE16. We obtained the highest 

impact with 3-compression levels (Full 

implementation details in [10]). Denote conv(a,b) 

as a convolutional layer with x number of filters, 

kernel size of y, and Up sample(z) as an up-sample 

layer with size z. To support CG of 64, 

convolutional layers conv(64,7) and conv(1,3) were 

added after CAE32 encoder’s layer number 12, 

yielding an output shape of (31,1). A decoder 

adapter transforms the compressed representton of 

64 to input the CAE32’s decoder. The adapter has 

four layers: conv(16,7), conv(32,3), Up sample(2), 

conv(32,3), Up sample(2) with an output size of 

(124,32). The output of the adapter is the input of 

layer 18 in CAE32. Each compressed 

representation has its dense layer supporting the 

downstream tasks’ prediction. The dense layer’s 

output shape is (1,1) with a REL activation.  

 Minimizing Memory Footprint for IoT 

Support  

Deploying compressing modules on lightweight 

IoT devices requires a resource-constrained 

implementation. We use twoencoders to support 3-

compression levels, which results in a 1.06MB 

memory footprint for the extended SOTA CAE. 

We use several techniques to reduce the model’s 

memory size: 

Deep learning compression techniques: 

 The number of learnable parameters of the CAE’s 

10th layer is reduced by decreasing the number of 

filters and kernel size. We compensate and preserve 

compression performance by preserving the 

receptive field using convolutional layers with 

stride=2 instead of pooling layers [5]. Note that the 

encoder’s 10th layer is used in all compression 

levels.  

Sharing layers: 

 Each encoder (CAE32, CAE64) shares the same 

learnable parameters;therefore, memory and 

computation are reused to avoid linear memory 

increase for each compression level [13]. Only the 

last encoder’s layers of each compression level are 

computed uniquely. Table II summarizes the 

resulting memory size when applying the above 

techniques. It decreases the number of parameters 

to only 84K parameters which are 67% fewer 

parameters to the straightforward 3-compression 

level CAE’s encoder.  

 Combined Loss Function  

Dynamic-Deep has three loss functions 

accumulated to a combined loss function. The 

reconstruction loss LR, calculates the distance 

between each sample in the original data segment 

X and the reconstructed data segment Xˆ over M 

samples. 

 

The downstream task weighted error Law, 

accumulates the downstream tasks’ loss functions. 

Let it denote task I, and Lit and wi denote its loss 

function and the weighted (scaling) factor of the 

loss function, respectively. 

 

The combined loss function Lc, combines the 

reconstruction loss LR with the downstream tasks’ 

weighted error Lw. w0 scales the LR to balance 

between reconstruction performance and 

downstream tasks performances. 

 

Finally, Dynamic-Deep learns to predict Lw using 

the mean squared error (MSE). 

 Training  

We observe a low correlation between the tested 

downstream tasks and the reconstruction errors 

across a wide range of the weighting factors wi (see 

tech report [10]). TABLE II: Compression 

Module’s Memory minimization 
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Hence, training a downstream task in isolation on 

the reconstructed signal may result in limited 

performance. We thus train Dynamic-Deep in three 

phases, where the second phase is repeated for each 

additional downstream task. First, we train the 

compressor to optimize the reconstruction task (see 

eq. (1)). Here, we use the MIT-BIH dataset by 

applying the preprocessing described in [24]. 

Second, we fine-tune with cascaded downstream 

tasks loss, including reconstruction loss (see eq. 

(3)). The downstream tasks’ models’ weights are 

frozen and trained for additional 20 epochs with the 

CinC dataset by applying the preprocessing 

described in [19]. Finally, training the dense layer 

to predict the downstream tasks’ weighted error for 

additional 10 epochs. As before, the compressor is 

frozen to not penalize previous training phases. 

EXPERIMENTAL RESULTS  

Datasets and Downstream Tasks Datasets: 

 used for training and evaluation: 

 • MIT-BIH [17]: used to evaluate ECG 

compression as it includes different types of noise 

patterns and various shapes of arrhythmic QRS 

complexes [15]. The benchmark contains 48 half-

hour ambulatory ECG recordings yielding a data 

set comprising 4.8K ECG data segments.  

• CinC [7]: Captured from the AliveCor ECG 

monitor and contains about 7K records with 8960 

samples each. These records are annotated by 

medical experts to the following classes: Atrial 

Fibrillation(AF), noise, other rhythms or normal. 

The test set has 602 data records where 40% are 

abnormal events. Training set has 5.4K records. 

Downstream tasks: (NN based) architectures were 

chosen:  

• HR arrhythmias classification: implemented using 

convolutional NN (CNN) [19] as a classification 

task. The ground truth (GT) of this task uses labels 

from the CinC dataset. Those labels are annotated 

by medical experts. 

 • R-R peak extraction(RPnet): implemented using 

NN [22] as a regression task locating the position 

in time of the peak. The GT of this task (i.e. R-R 

peaks on raw ECG) is generated by running the 

RPnet NN on the raw ECG signals offered by the 

CinC dataset. Then each compression level is 

evaluated relatively to the GT. Both are commonly 

used tasks in real-world ECG applications.  

Task Awareness Evaluation 

 We focus our evaluation on the Dynamic-Deep 

downstream tasks’ predictions performed by the 

dense layer in the compression module. We 

compare our predictions against two theoretical 

models, in which the downstream task feedback is 

available for the compressor:  

1) 2-level feedback-aware: the method has 2-

compression levels of 64 or 1 (act as a lower 

bound).  

3-level feedback-aware: the method has 3-

compression levels of 64, 32 or 1 (act as an upper 

bound).  

Each model executes the downstream tasks for 

every data segment and measures the error at each 

compression level. Then, they choose the highest 

compression that meets the configured upper bound 

error. If none meets the upper bound, the no 

compression level is chosen. Note that such a 

method is not applicable in typical IoT settings 

since the feedback is not readily available at the 

edges. We evaluated Dynamic-Deep vs. the 

theoretical models above considering the following 

setups:  

Single downstream task awareness:  
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of HR arrhythmia classification or R-R peak 

extraction. Fig. 4 shows that Dynamic-Deep 

follows the trends of the theoretical method 

successfully. Increasing the upper bound error 

increases the CG and the effective task loss and 

vice versa. For every configured upper bound 

DynamicDeep results with a lower effective task 

loss than the configured upper bound. Lastly, there 

is an improvement in CG for both tasks when 

increasing the number of compression levels from 

2 to 3 (more details in [10]).  

 

Multiple downstream tasks’ awareness: 

 of both R-R peak extraction and HR arrhythmia 

classification. Supporting multiple downstream 

tasks introduces a tradeoff on downstream task 

optimization. Dynamic-Deep uses a downstream 

task weighted error (see eq. 2), which can be 

viewed as a single task awareness. This setup 

achieves similar results as single downstream task 

awareness (see tech report for demonstrations 

[10]). Higher CG than 64 improved the theoretical 

feedback-aware up to an average CG of 100, 

however, Dynamic-Deep had low performance 

utilization of those levels (Full experimental results 

in tech report [10]). 

 

Fig. 3: Yearly cost expenses compression comparison 

Cloud Cost Reduction Analysis Using 

Dynamic-Deep  

Optimizing CG in IoT settings has a direct impact 

on reducing storage costs and networking 

bandwidth. For Cloud costs evaluation, we consider 

storage and computation (to account data 

decompression) costs since Cloud inbound traffic is 

usually free. We compare the following operational 

models:  

1) Dynamic-Deep: IoT device sends a compressed 

representation to the Cloud side, where it is stored, 

or decompressed to allow downstream tasks’ 

execution.  

Dynamic-Deep with uncompressed: IoT device 

sends both compressed and uncompressed 

representations. 

The compressed representation is stored while 

downstream tasks operate on the uncompressed 

representation. We assume that a domain expert 

reviews some portion of x% of historical sensor 

data, and accounts for the corresponding overhead, 

the cost of fetching data from storage and 

decompressing it, in both models. We ran these two 

models on Google Cloud Platform [11] using ECG 

data segment traffic equivalent to a small-mid 

hospital (200 beds). We configured the upper 

bound error of HR arrhythmia classification to be 

0.75 and received an average CG of 48.31. We 

measured the computation expenses of our setup on 

an N1-Custom instance with 1 CPU, 2GB RAM, 

Intel Xeon 2.2GHz. Fig. 5 presents the measured 

results. Lossless compression reduces expenses by 

63% regardless of the specific architecture due to 

its low computation usage. Dynamic-Deep with 

uncompressed architecture saves up to 97% cost 

expenses compared to no compression solution and 

is more efficient than lossless even with 100% data 

fetching. 

CONCLUSION 

We provided a self-tailored lossy compression 

structure appropriate for IoT networks that permit 

tuning ECG downstream duties` performances and 

optimize the procedure of compacting ECG 

statistics segments the usage of a variable-charge 

compression. The IoT tool learns to expect the 

downstream challenge blunders to permit in 

structured capability from Cloud services. We 

efficiently confirmed CG enhancements on  styles 

of downstream duties in opposition to a SOTA 

CAE. Additionally we confirmed the technique 

permits the practitioner to stability among favored 

overall performance and compression benefit as a 

result additionally controlling Cloud costs. Future 

paintings will amplify the implementations to 

different domains. Acknowledgment - We thank 

Guy Vinograd from bio-T for his comments, and 

deeply thankful to Elad Levy for his treasured 

comments on version layout and analysis. 
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