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Abstract 

Recent advances in robotics have started making it feasible to 

deploy large numbersof inexpensive robots for tasks such as 

surveillance and search. However, coordinationof multiple 

robots to accomplish such tasks remains a challenging problem. 

This reportreviews some of the recent literature in multi-

robotsystems. It consists of two parts.In the _rst part, we reviewed 

the studies on the pattern formation problem, that ishow can a 

group of robots be controlled to getinto and maintain a 

formation. Thesecond part reviews the studies that used 

adaptation strategies in controlling multirobotsystems. 

Specifically we haveinvestigated (1) how learning (life-long 

adaptation)is used to make multi-robot systems respond to 

changesin the environment as well inthe capabilities of 

individual robots, and (2) how evolution is used togenerate 

groupbehaviors. 

 

Introduction 

Recent advances in robotics have started making 

itfeasible to deploy large numbers ofinexpensive 

robotsfor tasks such as surveillance and search. 

However, coordinationof multiple robots to 

accomplish suchtasks remains a challenging problem. 

Previousreviews on multi-robot systems (such as 

those written by Caoet al.[25] and Dudek etal.[7]) 

have taken a broad view.Different from these, this 

report has a narrow span and 

limits itself to the recent literature on pattern 

formation and adaptation in multi-robotsystems.The 

report consists of two parts. In the first part, we 

reviewed the studies on thepattern formation 

problem, that is how can a group of robots be 

controlled to get intoand maintain a formation. The 

second part reviews the studies that used 

adaptationstrategies in controlling multi-robot 

systems. Specifically we have investigated (1)how 

learning (life-long adaptation) is used to make multi-

robot systems respond tochanges in the environment 

as well in the capabilities of individual robots, and 

(2) howevolution is used to generate group behaviors. 

 

Pattern formation in multi-robot 

systems 

The pattern formation problem is defined as the 

coordination of a group of robots toget into and 

maintain a formation with a certain shape, such as 

awedge or a chain.Current application areas of 

pattern formation include search and rescue 

operations,landmine removal, remote terrain and 

spaceexploration, control of arrays of satellitesand 

unmanned aerial vehicles (UAVs).Pattern formation 

is also observed in various animal species as a result 

of cooperativebehaviors among its members, 

wherethe individuals stay at a specific orientationand 

distance with respect to each other while moving, 

orfill a specific area as homogeneouslyas 

possible.Examples of pattern formation in animals 

include birdflocking,fish schooling, and ants forming 

chains[18]. 

We have classified the pattern formation studies 

intotwo groups. The first groupincludes studies where 

the coordination is done by a centralized unit that can 

overseethe whole group and command the individual 

robots accordingly. The second groupcontains 

distributed pattern formation methods for 

achievingthe coordination. 

 

Centralized pattern formation 

In centralized pattern formation methods, a 

computational unit oversees the wholegroup and 

plans the motion of the group members 

accordingly[3, 13, 23, 24]. Themotion of each robot 

is then transmitted to the robot via a communication 

channel.Egerstedt and Hu[13] propose a coordination 

strategy for moving a group of robotsin a desired 

formation over a given path. Path planning is 

separated from the pathtracking task. It is done in a 

centralized way and the tracking of virtual reference 

pointsare handled separately. The path for a virtual 
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leader is computed as a reference point forthe robots 

to follow. They applied the method to coordinate the 

movement of simulatedrobots in a triangular 

formation while avoiding anobstacle. In this example, 

the robotsthat formed the corners of the triangle, went 

around an obstacle, which fell in betweenthe robots. 

The paper proves that, if the tracking errors of the 

robots are bounded ortracking is done perfectly, then 

the described method stabilizes the formation 

errorKoo and Shahruz [23] propose a centralized 

path-planning method to yy a groupof unmanned 

aerial vehicles (UAVs) in a desired formation. The 

path of each UAVis computed by a leader UAV, 

which is more capable than others. Only the leader 

has cameras and sensors. It tells the other UAVs, via 

acommunication channel, whattrajectories they 

should track. What UAVs should do is to take off and 

_y toward theirtrajectories and lock onto them. Two 

cases are considered in experiments: the casewhere 

UAVs take off one by one, and where they do it 

simultaneously. Trajectorycomputation is the main 

focus of this study.Belta and Kumar [3] propose a 

centralized trajectory computation scheme that 

useskinetic energy shaping. Instead of using a 

constant kinetic energy metric, they employa 

smoothly changing the kinetic energy metric. The 

method generates smooth trajectoriesfor a set of 

mobile robots. The proximity between the robots can 

be controlled viaa parameter. However the method 

does not take obstacle avoidance into 

considerationand that is not scalableA target 

assignment strategy for formation building problem 

is described by Kowalczyk[24]. Starting with a 

scattered group of robots, the algorithm first assigns a 

targetpoint for each robot in the desired final 

formation. Then it generates necessary prioritiesand 

trajectories for the robots to avoid collisions while 

moving to their target points. Each robot has an area 

around its path that is forbidden to other robots 

withlower priorities. If the robot's trajectory crosses a 

forbidden area of a higher priorityrobot, the robot 

waits until the higher priority robot moves out of its 

way. The methodis tested with non-holonomic and 

holonomic robots. The method assumes the 

existenceof a global sensing ability and a centralized 

computation. The scalability of the method is not 

addressed. 

 

Centralized pattern formation strategies rely on a 

central unit that oversee the wholegroup and assume 

the existence of a communication channel between 

the central unitand the individual robots. Such 

assumptions make the centralized strategy more 

costly,less robust to failures, and less scalable to the 

control of large number of robots. Analternative is to 

use decentralized pattern formation strategies 

 

Decentralized pattern formation 

Communication and completeness of information 

known by robots impose a trade-offbetween precision 

and feasibility of forming and maintaining the pattern 

and the necessityof global information and 

communication. Studies that require global 

informationor broadcast communication[29, 19, 12] 

may suffer from lack of scalability or highcosts of the 

physical setup but allow more accurate forming of a 

greater range of formations. 

On the other hand, studies using only 

localcommunication and sensor data[21, 22, 10, 5, 

17, 15, 9, 11] tend to be more scalable, more robust, 

and easier to build;but they are also limited in variety 

andprecision of formationsSugihara and Suzuki[12] 

achieved pattern formation by providing each robot 

theglobal positions of all others. In this study, an 

algorithm is developed for each pattern.The proposed 

method can uniformly distribute robots creating 

different patternformations (circles, polygons, line, 

filled circle, and filled polygon). It can also split a 

groupof robots into an arbitrary number of nearly 

equal sized groups. Despite the impressiveresults 

obtained by this decentralized algorithm, the global 

communication required toshare information among 

the whole group, makes it less scalableCarpin and 

Parker[19] introduced a cooperative leader following 

strategy for a teamof robots. The robots are able 

tomaintain a specific formation while 

simultaneouslymoving in a linear pattern and 

avoiding dynamicobstacles. The robots use local 

sensorinformation and explicit broadcast 

communication among themselves. The 

frameworkhandles heterogeneous teams, i.e. 

comprising of robots with different types of sensors, 

as well as homogeneous ones 

Two levels of behaviors were implemented for tasks: 

team-level and robot-levelbehaviors. Transitions are 

made when necessary among specific behaviors in 

these twolevels. For example, when a member of the 

team faces an obstacle, the whole teamwaits together 

with that member for it to go away for a certain 

amount of time. If thistime is exceeded that member 

circumnavigates the obstacle and the team returns to 

itsmain task of moving in a formationBalch and 

Hybinette [21, 22] proposed a different strategy for 

robot formation thatis inspired from the way 

molecules form crystals. In this study, each robot has 
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severallocal attachment sites that other robots may be 

attracted to. This concept is similarto molecular 

covalent bonding. Possible attachment site 

geometries include shapesresembling where the robot 

is the center of the shape and the attachmentsites are 

the ends of the line segments. Various robot 

formation shapes result fromusage of different 

attachment site geometries just as different crystal 

shapes emergefrom various covalent bond 

geometries. When a teamof robots moving in a 

formation,they avoid the obstacle by splitting around 

it and rejoining afterpassing. This approachis scalable 

to large robot teams since global communication is 

not used and that local sensing is sufficient to 

generate effective formation behaviors in large robot 

teams. 

 

Another method similar to crystal generation which 

employs a form of probabilisticcontrol is proposed by 

Fujibayashi et al.[11]. This study makes use of virtual 

springsto keep two agents in close proximity. Each 

pair of robots within a certain range ofeach other, are 

connected via a virtual spring. Each agent is 

classifiedby the numberof neighboring agents within 

this range (number of connections). The robots 

formtriangle lattices that have random outlines. To 

obtain a desiredoutline, the virtualsprings among 

some robots are broken with a certain probability. 

The candidatespringsto be broken are chosen 

depending on the number of connections the robots it 

joinshave. This breaking preference and the 

probability of breakingchanges from formationto 

formation. The algorithm uses only local information 

and is decentralized. Onedisadvantage of the method 

is the difficulty ofchoosing custom parameters for 

eachformation. 

 

A graph-theoretic framework is proposed by 

Desai[10] for the control of a teamof robots moving 

in an area with obstacles while maintaining a specific 

formation.The method uses control graphs to defined 

behaviors of robots in the formation. Thisframework 

can handle transitions between formations, i.e. 

between control graphs.Proofs of the mathematical 

results required to enumerate and classify control 

graphsare given. Although the computations for 

control graphs increase with the number ofrobots,the 

fact that these computations are decentralized allows 

the methods describedto be scalable to large groups 

Another graph-based approach to moving in 

formation problem is introduced byFierro and 

Das[17]. They proposed a four-layer modular 

architecture for formationcontrol. Group control layer 

is the highest layer generating a desired trajectory 

forthe whole group to move. Formation control layer 

implements a physical network, acommunication 

network, and a computational network (control 

graph). It maintains theformation by using local 

communication and relative position information. 

Kinematicscontrol layer deals with the required linear 

and angular velocities of robots. Finally, thedynamic 

control layer handles the task of realizing the 

necessary speeds given by the kinematics control 

layer. This four-layer architecture provides an 

abstraction amongtasks required at different levels. 

For example, a robot with different mass, inertia,and 

friction can be used only by changing the dynamic 

control layer. Furthermorea modular adaptive 

controller is described which can manage control of 

robots withunknown dynamics and learns the robot 

dynamics on-the field. Hence using a different robot 

requires no change in the system. The method 

described is scalable (controlalgorithms scale 

linearly) and flexible (it allows various formations). 

Centralized anddecentralized versions of control 

graph assignment algorithm is also described in the 

study. 

only local communication and sensor information. 

Obstacle avoidance is also providedin this method. It 

extends ordinary behavior-based approaches with the 

application ofsocial roles that represent positions in 

the formation and with the use of local 

communication to improve performance. As new 

agents join the formation, the shape is fixed bylocal 

communications and role changes where necessary. 

The locally communicatedinformation reaches the 

leader, i.e. the front most robot, which knows the 

whole shapeof the current formation and which 

decides on the changes necessary. This informationis 

then propagated to the necessary followers, and the 

formation is updated. There is noneed to predefine 

social roles or positions for robots. Everything is 

done dynamicallyas the formation grows. This 

method supports various formations and also 

switchingbetween them, therefore it is flexible as 

well as being scalable and local.Dudenhoeffer and 

Jones[5] designed and implemented a tool to model 

and simulatecollective behavior and interactions of a 

group of thousands of robots. Usingthis 

simulationtool, the problem of hazardous 

materialdetection by thousands of micro-

robotsscattered around a region is tackled. Social 

potential _elds are utilized for coordinatedgroup 

behavior where robots are desired to stay at a specific 

distance from others toobtainoptimum coverage of 

the area. They are also required to wander in this 

formationto search other parts. The desired behavior 

is obtained by using a subsumption architecture.This 

study also validates the proposed method in cases 

where it is possible foragents to die and where agents 
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have imperfect sensorreadings. The method uses 

onlylocal information and is scalable to very large 

groups of robots.Mataric and Fredslund [9] used local 

information to establish and maintain 

formationsamong robots. Each robot has a unique ID 

and a designated friend robot whichit can see through 

a .friend sensor.. There is also minimal 

communication betweenrobots: heartbeat signals 

(robots broadcast their IDs), swerve signals 

(changing direction),and formation messages. Each 

robot can learn the number of robots in formationand 

the type of formation using broadcasted messages. 

For each formation, each robothas a specified angle 

which determines the angle it should keep between 

its front directionand the direction of its friend. This 

angle is calculated locally. The detailsof this 

calculation are given in [9]. This study accomplishes 

the task of establishingand maintaining formations 

using only local information and minimal 

communication. 

 

However the possible formations are limited to chain-

shaped ones that do not make abackward curve 

One of the major reasons why multi-robot systems 

are preferred over single-robotsystems is their 

robustness in performance. The robustness of multi-

robot systems can 

be improved by incorporating adaptation mechanisms 

that can respond to continuingchanges in the 

environment as well as in the capabilities of 

individual robots. 

 

Adaptation in multi-robot systems 

In this section we review the studies that used 

adaptation strategies in controlling 

multirobotsystems. Specifically we have investigated 

(1) how learning (life-long adaptation)is used to 

make multi-robot systems respond to changes in the 

environment as well inthe capabilities of individual 

robots, and (2) how evolution is used to generate 

groupbehaviors. 

In multi-robot systems, adaptation can be achieved at 

two levels: group level andindividual level. We 

classify the recent studies into these levels and 

review them in thefollowing subsections 

 

Individual level adaptation 

Reinforcement learning models become useless when 

the state space is too large. Usingmultiple learning 

modules for different states instead of a single 

complicated learningmodule is one approach to solve 

this problem. Takayashi's work[26] is one such 

study.The problem studied in his work is a reduced 

version of robo-soccer challenge. Opponentsare 

assumed to have different modes of operation each 

with a different policy.Modules consist of predictors 

and planners. Predictor predicts the next action of 

opponentbased on its previous behavior. Planner on 

the other hand generates optimalmove based on this 

prediction. Predictors compete for better accuracy 

and only bestpredicting module is reinforced. This 

creates specialized modules for different modesof 

operation of the opponent.The problem used in this 

work is ball chasing in presence of a random moving 

opponent.The results show improvement over single 

module learning. Reinforcementlearning converges to 

optimal policy given sufficient trials but it is often the 

case that these sufficient trials are too large to be 

feasible. Piao[20] proposes an improved 

reinforcementlearning method to improve learning 

speed of learning. This method iscombination of rule 

learning, reinforcement learning and action level 

selection whichis basically behavior rules for specific 

states.The rule base consists of instances that are 

states passed through a fixed interval.These instances 

are labeled after each epoch using information 

gathered through theepoch. These instances are then 

combined to create rules. These rules are used as 

aprohibitive guide to inhibit useless or harmful 

actions. Action level selection is composedof hard 

coded rules to govern general strategy of robots. 

Action level is alsofed into reinforcement level 

together with sensor data to generate the state 

information.Finally reinforcement learning module 

uses sensory information and action levelto generate 

state and learns to generate actions. Piao applies this 

method to the robosoccerproblem. He assumes only 

one agent is learning at a given time and 

reportsimproved performance on learning with 

multiple robots over standard Q learning. 

 

Reinforcement learning is intended for single entities, 

therefore it doesn't haveany mechanisms to support 

cooperative behaviors. Tangamchit'swork[16] tackles 

this problem. This work addresses the distinction 

between action level and task level systems.To solve 

problems, action level systems generate reactive 

behaviors. On the otherhand task level systems 

generate tasks composed of subtasks possibly 

distributed overmultiple agents. Tangamchit defines 

cooperation as a task level activity, where robotscan 

share resources and duties.Two different schemes of 

reward are considered: global and local. In the global 

rewardscheme, the reinforcement received by a unit 

is distributed to the whole group. Incontrast, in the 

local reward scheme the reward is not distributed 

among the membersof the group. Two learning 

algorithms are considered: Q-learning and Monte 
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Carlolearning. Q-learning uses cumulative discounted 

rewards whereas Monte Carlo learninguses averaging 

to assess the value of each action in each state. 

Reward is samefor each state action pair in an 

episode. This scheme is slower since it disregards 

theimportance of latter actions in episode which are 

usually more effective in obtainingreward. 

 

The case examined for this study is puck collecting 

behavior which a subclass offoraging problem. 

Robots are required to collect pucks and to deposit 

them into thebin. Each action has a negative reward 

except the action of depositing a puck. The field 

consists of a home region, which doesn't contain any 

pucks, a deposit bin, andpucks distributed around the 

region. Two heterogeneous robots are used for this 

task.The first robot moves and collects better in the 

region outside the home region. Thesecond robot is 

limited in movement to home region but can 

accomplish bin depositaction more efficiently. 

Optimal strategy requires robots to cooperate and 

first to bringpucks into home region and second to 

deposit them. This requires task level learning. 

 

Results indicate that task-level cooperation can't be 

learned well using local rewardsor discounted 

cumulative rewards as in Q learning. In opposition 

global rewardscoupled with average rewards result in 

cooperative policies for this task.Reinforcement 

learning only requires feedback for applied sequence 

of actions toincorporate domain knowledge. This is 

usually incorporated by choice of reward functions. 

Mataric[14] discusses reward functions in a foraging 

task. Although single goalsare mathematically simple 

to analyze, they cause problems through acquisition 

of behavior. 

 

Especially contingent and sequential behaviors are 

hard to convert into monolithicgoal functions. Instead 

of this, separate goal functions are used, each 

describinga subgoal of agent. A second improvement 

is progress estimators. These estimatorsgive a rough 

idea of how well a specific goal is going on. These 

two improvementsgreatly increase the usage of 

domain knowledge in the topic (by designing 

appropriatesubgoals and estimating progress of the 

subgoals). They also give much more 

reinforcementthan standard methods, since not only 

the final goal but also intermediate steps are 

reinforcedThis improved method is tested on real 

robots working on a foraging task. Robots 

are to collect pucks and to deliver them to home. 

Robots are also responsible to bepresent at home at 

certain intervals. Robots are given some simple 

reactive behaviorsto reduce state space of learning 

problem to a manageable size. These behaviors 

arecollecting pucks when it is immediately before 

agent, avoiding obstacles and droppingpucks when at 

home. Experiments are compared with optimal policy 

generated byhand. Results indicate the benefit of both 

improvements purposed. An interesting notein this 

paper is the interference caused by agents. Increasing 

number of learning agentshas detrimental effect on 

general learning speed and convergence Parker's[6] 

L-ALLIANCE model uses multiple behavior sets and 

global communicationsto achieve cooperation. Each 

behavior set has a monitor. These monitorscheck 

required conditions for activation of behavior sets, 

also assess the capability ofagent and other agents. 

Parker introduces two motivations: impatience and 

acquiescence.Impatience correspond to tendency to 

take a task being done by other robotsand 

acquiescence describes tendency to give up a task to 

be performed by anotherrobot. L-ALLIANCE 

architecture changes these motivational parameters 

during learning.The architecture requires robots to 

broadcast current actions to other robots. 

Thisarchitecture assumes that when a robot declares 

an action, the changes in environmentthat can be 

caused by result of that action are attributed to that 

robot. This handlescredit assignment problem.L-

ALLIANCE architecture can handle heterogenous 

groups and can adapt to failuresor changes in robot 

abilities which are desired properties. On the other 

hand,L-ALLIANCE requires global communication 

and makes a strong assumption to solvecredit 

assignment problem. 

 

Goldberg et al. [4] propose Augmented Markov 

Models (AMM).AMMis a Markovmodel improved 

by additional statistics about transitions. It is 

designed to learn thestatistics of the environment 

rather than to generate a policy. AMM's assume 

actionbeing performed can be known perfectly, so it 

is differentiated from Hidden MarkovModels AMM's 

are first order Markov models but they are built 

incrementally. This incrementalbuilding gives them 

ability to better approximate such higher order 

trasitionsin the system. Their work combines AMM's 

with behavior based robotics [2]. Eachbehavior is 

monitored using AMM's with different time scales. 

This allows system torespond both slow and fast 

changes in the environment. 

 

Group level adaptation 

Reinforcement learning is by definition centralized 

which is inefficient to implement inmulti-robot 

systems. Yanli's study[27] on opportunistically 
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cooperative neural learningproposes a trade-off for 

centralized versus decentralized learning debate. In 

pure decentralizedlearning models each agent keeps 

its learning experience hidden from otheragents. This 

seriously affects performance of the group since the 

experience can notbe shared. Yanli solves this 

problem by adding 'opportunistic' search. This 

strategyis similar to survival of fittest concept in 

genetic algorithms. Less _t networks copyhighly _t 

networks to improve their performance. 

 

Yanli reports the comparison of three cases, central, 

distributed and opportunisticallydistributed. These 

cases are tested on searching task where agents are 

requiredto cover as much of a given space as possible 

avoiding multiple passes as much aspossible. The 

best strategy clearly is one that utilizes cooperation. 

All agents act simultaneouslyand plan their 

movements ahead of action. Agents also share their 

planswith other agents. These plans are used to 

predict the next action of all other agentsby each 

agent. Learning takes place in these predictors. When 

the next action of otheragents can be predicted 

precisely reward can be calculated 

Results show that central learning is superior to all 

this methods in performance.However central 

learning has many problems in fault-tolerance and 

communication.OCL (opportunistically cooperative 

learning) performs almost as well as central 

learningand both perform remarkably better than 

distributed only case. 

 

Agah[1] combines both individual and group 

adaptation in his work. Agah usesso called Tropism 

Architecture to approach multi robot learning 

problem. Tropismarchitecture serves as a learning 

module between senses and actions. Each tropism 

isdefined as a tendency to elicit a response for a 

given stimuli. Tropism architecture keepsa list of 

learned tropisms (i.e. state, action, tendency pairs). 

Agents make decisionsbased on matching tropisms to 

current state. A stochastic process is used to 

determinewhich actions to apply biased on the 

tropism values. 

 

Both kinds of learning are applied using this 

architecture. In individual learningScheme,the list of 

tropisms are updated based on feedback obtained 

from environment.These updates include adding a 

new valid action for current state, increasing 

tropismvalue for a pair which has been positively 

reinforced and changing action when aninvalid or 

negatively reinforced action is encountered In 

population learning, the tropism lists for each agent is 

converted into variablelength bit strings. Using these 

bit strings, a genetic algorithm is run. The fittness 

ofeach individual is calculated based on the rewards 

it received during individual learning.Results indicate 

success of this twofold method even in absence of 

reinforcementpropagation as in Q-learning. 

 

It is not always possible to have behaviors 

beforehand and even behaviors shouldbe learned in 

certain cases. Hexapod locomotion is such a case. 

Parker[8] studieson learning a cooperative box 

pushing task in hexapod robots. The main problemhe 

is facing is the locomotion problem, since moving 

hexapod robot requires morecomplicated operations 

than wheeled robots. For this task Parker purposed 

CyclicGenetic Algorithms (CGA), which handles 

requirements of such complicated control.The 

motivation behind CGA's is evolving a sequence of 

operations instead of simplestimulus-response pairs. 

CGA encodes a series of activations which are to be 

repeatedby the agent.Fitness of each chromosome for 

a given task is calculated by using a 

computersimulation where the chromosome to be 

evaluated is paired with the best known solutionto the 

problem. The success of the group is used as the 

fitness measure for thechromosome. Results indicate 

the effectiveness of purposed method. 

 

Cooperation requires coordination among robots, 

which requires communication.Early approaches to 

cooperation used peer-to-peer communication 

models. This, althoughpossibly required for optimal 

solution, requires increasing computational powerand 

bandwidth for increasing number of robots in the 

system.Local communication reduces bottlenecks in 

communication but not totally solves this problem. 

Stigmergy,that is communication through 

environment, is a possible solution to 

communicationbottleneck. This implicit 

communication scheme allows scalability and is 

observed insocial insects. 

 

Yamada's[28] work provides a working 

implementation of an implicit communicationsystem 

for cooperation in robot groups. This scheme is 

applied to the box pushingproblem. Goal is identified 

with a light source and robots are assumed to be 

capable ofthe following: detecting whether box being 

pushed is moving or not, presence of otherrobots and 

presence of walls. Here walls are modeled as 

unmovable boxes so they areignored in the end. The 

authors generate situations to solve implicit 

communicationproblem. Situations abstract models 

of state of the world, which are computed usingthe 

sensor data and some very crude memory (such as 

counters for some sensor readings).Robots have sets 

http://www.ijmece.com/
https://zenodo.org/records/14505661


             ISSN 2321-2152 

               www.ijmece.com  

             Vol 11, Issue 4, 2023 

 

 
 
https://zenodo.org/records/14505661 

19 

of rules for each situation. These rules are applied 

according tosensor readings. 

 

Conclusion 

We reviewed the recent studies on the pattern 

formation and adaptation in multi-robotsystems. The 

pattern formation studies are classified into two 

groups. The first groupincludes studies where the 

coordination is done by a centralized unit that can 

overseethe whole group and command the individual 

robots accordingly. The second groupcontains 

distributed pattern formation methods for achieving 

the coordination. Thestudies that used adaptation 

strategies in controlling multi-robot systems were 

classifiedinto two levels: group level and individual 

level. 
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