

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

2

Estimated Data Set for Partially Observed System Approximate
Planning and Reinforcement Learning

Y. Prasada Reddy

Abstract
Graph representation learning (GRL) has seen a dramatic increase in interest as of late. The availability of labelled

data has led to the development of three main kinds of GRL techniques. Network embedding is the first; it's

concerned with the unsupervised learning of representations of relationship structures. The second one is known

as graph regularised neural networks, and it incorporates a regularisation objective into neural network losses to

teach semi-supervised learning via the use of graphs. To conclude, graph neural networks can learn differentiable

functions across discrete topologies with any structure. Intriguingly, despite the relative popularity of these

domains, there has been hardly any attempt to combine the three paradigms. Our goal here is to provide a bridge

between network embedding, graph regularisation, and graph neural networks. Our comprehensive taxonomy of

GRL techniques is an attempt to unite several fields of research. We focus on the GRAPHEDM framework, which

brings together popular techniques for learning graph representations using semi-supervised and unsupervised

approaches. These methods include GraphSage, GCN, GAT, DeepWalk, and node2vec. To show how

generalizable GRAPHEDM is, we used this framework to accommodate over 30 current approaches. We believe

this consolidated view serves a dual purpose: first, it sets the stage for further research in the area, and second, it

clarifies the reasoning behind these methods.

Keywords: Learning on Manifolds, Relational Learning, Geometric Deep Learning, and Network Embedding

1. Introduction

2. 2. Building models for complex

structured data sets is a challenging task.

There have been a great deal of

successful models developed for

structured data specified on discretized

Euclidean domains within the last

decade. Recurrent neural networks are

used to represent sequential data, such as

text or videos, as an example. The

networks' success in machine translation

and speech recognition tests is evidence

of their ability to efficiently represent

sequential data. Another example is

convolutional neural networks (CNNs),

which by parameterizing neural

networks according to structural priors

like shift-invariance have achieved

amazing performance in pattern

recognition applications like image

classification and speech recognition.

For certain types of data with simple

relational structures, such as sequential

or pattern-based data, these outstanding

accomplishments have only proved

useful. It is necessary to extract data from

systems where the data is not always

regular in order to understand the

interaction between items, as

complicated connection structures often

arise. In addition to semi-supervised

learning, social networks,

computational

Department of Computer Science and Engineering

KSRM College of Engineering (A)

Kadapa

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

3

When it comes to representing complicated relational data,

domains often turn to graphs, which are universal data

structures comprised of nodes and edges (Gilmer et al., 2017;

Stark et al., 2006; Konstas et al., 2009; Garcia and Bruna,

2018). It is challenging to build networks with robust

structural priors for graph-structured data due to the fact that

graph topologies aren't always constant and might vary

substantially between graphs and even amongst nodes

within the same graph. In particular, operations such as

convolutions do not work on graph domains that are not

regular. For instance, you may apply the same filter weights

across the board since every pixel in

a picture has the same neighbourhood structure. But there

can be no ordering of nodes (Fig. 1) since each node in a

network may have its own unique neighbourhood structure.

Also, geometric priors (such shift invariance) employed in

Euclidean convolutions may not work in non- Euclidean

domains (such domains may not even allow translations to

be specified).

3. In reaction to these challenges, research into

Geometric Deep Learning (GDL) arose; GDL aims to

apply deep learning algorithms to data that is not

geometrically regular. Due to the prevalence of graphs

in practical contexts, many are enthusiastic about

applying machine learning methods to graph-structured

data. One way to describe graph-structured data is via

learned embeddings, which are low-dimensional

continuous vector representations. GRL approaches are

one example of this. Typically, GRL learning tasks may

be either supervised (or semi-supervised) or

unsupervised. The first set of guidelines is predicated

on the concept of acquiring low- dimensional

geometrical representations that preserve the initial

graph topology. The second set of predictors also learns

to use low-dimensional geometrical representations for

specific downstream prediction tasks like node or graph

classification. Various signals described on graphs, or

node properties, are usually used as inputs in the

supervised setting, as opposed to the unsupervised

environment, where inputs are generally graph

structures. The underlying discrete graph domain can

stay stable in a transductive learning context, but it can

change in an inductive learning scenario (like when

trying to predict molecular attributes where each

molecule is a graph). Finally, it's worth noting that most

supervised and unsupervised methods learn

representations in geometry-based vector spaces, but

that interest in learning representations that are not

based on Euclidean geometry has recently increased.

The goal of this learning style is to gain understanding

of non-geometric embedding spaces, including

spherical or hyperbolic spaces. A continuous

embedding space that mimics the underlying discrete
structure of the input data is the main focus of this study

(e.g., hyperbolic space is a continuous version of trees;

Sarkar, 2011).
Given the exponential growth of the GRL area, we believe it

is essential to unify and clarify these

methods within a unified and accessible framework. With

any luck, this paper will help readers have a better grasp on

the many ways in which deep learning models use graph

structure by offering a thorough summary of representation

learning approaches for graph-structured data.

Several learning questionnaires using graph

representation are accessible. The issue of shallow

network embedding and auto-encoding techniques has

been thoroughly reviewed in several surveys. (Cai et

al., 2018; Chen et al., 2018a; Goyal and Ferrara, 2018b;

Hamilton et al., 2017b; Zhang et al., 2018a) are

publications that we suggest for this. Secondly, a

thorough evaluation of deep learning techniques for

non-Euclidean data, such manifolds or graphs, is given

by Bronstein et al. (2017). Thirdly, several recent

studies have explored methods that apply deep learning

to graphs, namely graph neural networks (Battaglia et

al., 2018; Wu et al., 2019; Zhang et al., 2018c; Zhou et

al., 2018). Instead of forming connections across

different domains of graph representation learning, the

majority of These studies narrow their emphasis to only

one. Graph Encoder Decoder Model (GRAPHEDM) is

an overarching paradigm that categorises existing

research into four key areas: (i) techniques for shallow

embedding, (ii) methods for auto- encoding, (iii)

methods for graph regularisation, and (iv) approaches

for graph neural networks (GNNs). Hamilton et al.

(2017b) presented an encoder-decoder model, which

this framework builds upon.Additionally, we provide a

Graph Convolution Framework (GCF) to describe

GNNs
We may compare and analyse several GNNs with different

designs, as stated by

Veliˇckovi'c et al. (2018). Some of these GNNs employ

self-attention as a neighbourhood aggregation function,

while others work in the Graph Fourier1 domain. In

order to help readers better grasp the various graph-

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

4

based learning techniques, this thorough summary of

current research aims to highlight their commonalities

and distinctions, as well

as its potential expansions and limitations. But our poll

is different from the others in three key respects:
We introduce a general framework, GRAPHEDM, to
describe a broad range of super- vised and unsupervised
methods that operate on graph-structured data, namely

shal- low embedding methods, graph regularization
methods, graph auto- encoding methods and graph neural
networks.
Our survey is the first attempt to unify and view these
different lines of work fromthe same perspective, and we
provide a general taxonomy (Fig. 3) to understand
differences and similarities between these methods. In
particular, this taxonomy en-

(a) Grid (Euclidean). (b) Arbitrary graph (Non-Euclidean).

Figure 1: An illustration of Euclidean vs. non-Euclidean graphs.

stands for over 30 distinct GRL algorithms. A detailed taxonomy may help us comprehend the distinctions
between different tactics.

Link prediction and node classification are two of
the important graph applications that our open-

source GRL library offers. The library also

features state-of-the-art GRL algorithms. At

https://github.com/google/gcnn- survey-paper,

you may discover our implementation.Anyone

may come and see it.Survey administration In

Section 2, we go over some basic graph principles

and provide a clear explanation of the problem

context for GRL. In Section 2.2.1, the role of node

features in GRL and their connection to supervised

GRL are discussed. In Section 2.2.2, inductive and

transductive learning are defined. In Section

2.2.3.1, positional and structural embeddings are

differentiated. Finally, in Section 2.2.4, supervised

and unsupervised embeddings are defined. We go

on to explain what these key ideas in GRL are and

how they vary from one another. The third section

introduces GRAPHEDM, a general framework

that may be used in both inductive and

transductive learning settings to specify

supervised and unsupervised GRL methods,

regardless of whether they include or do not

include any nodes. Based on GRAPHEDM, which

includes over thirty modern GRL models, we

provide a thorough taxonomy of GRL methods

(Fig. 3). In Section 5, we describe supervised

approaches, and in Section 4, we describe

unsupervised methods, using this taxonomy.

Graph applications are reviewed in Section 6,

which is the last section.

3. Preliminaries
4. Graph representation learning

approaches attempt to address
the generalized network
embeddingissue; for an
overview, see Table 1. Here, we
offer the notation used
throughout the article.

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

5

6.1 Definitions
 Notation Meaning

Abbreviations

GRL

GRAPHEDM

GNN

GCF

Graph Representation

Learning Graph Encoder

Decoder Model Graph Neural

Network

Graph Convolution Framework

Graph notation

G = (V, E)

vi ∈ V

dG(·,

·)

deg(·)

D ∈ R|V |×|V |

W ∈ R|V |×|V

| W̃ ∈ R|V

|×|V |

A ∈ {0, 1}|V |×|V |

L ∈ R|V |×|V |

˜L ∈ R|V |×|V |

Lrw ∈ R|V |×|V |

Graph with vertices (nodes) V and edges E

Graph vertex

Graphdistance (length of shortest path)

Nodedegree Diagonal degree matrix

Graph weighted adjacency matrix

Symmetric normalized adjacency matrix (W̃ = D−1/2WD−1/2)
Graph unweighted weighted adjacency matrix

Graph unnormalized Laplacian matrix (L = D − W) Graph

normalized Laplacian matrix (L˜ = I − D−1/2WD−1/2)

Random walk normalized Laplacian (Lrw = I − D−1W)

6

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

Table 1: Summary of the notation used in the paper.

GRAPHEDM notation

d0

X ∈ R|V |×d0

d

Z ∈ R|V |×d

dl

Hl ∈ R|V |×dÆ

Y

yS ∈ R|V |×|Y|

yˆS ∈ R|V |×|Y|

s(W) ∈ R|V |×|V

| Ŵ ∈ R|V |×|V |

ENC(·; ΘE)

DEC(·; ΘD)
DEC(·; ΘS)
LS (yS, yˆS; Θ)

SUP

LG,REG(W, Ŵ ; Θ)

LREG(Θ)

d1(·, ·)

d2(·, ·)

|| · ||p

|| · ||F

Input feature dimension

Node feature matrix

Final embedding dimension

Node embedding matrix

Intermediate hidden embedding dimension at layer l

Hidden representation at layer l

Label space

Graph(S = G) or node (S = N) ground truth labels Predictedlabels

Target similarity or dissimilarity matrix in graph regularization

Predicted similarity or dissimilarity matrix

Encoder network with parameters ΘEGraph

decoder network with parameters ΘD Label

decoder network with parameters ΘS

Supervised loss

Graph regularization loss

Parameters’ regularization loss

Matrix distance used for to compute the graph regularization loss

Embedding distance for distance-based decoders

p−norm
Frobenuis norm

7. A Taxonomy of Graph
Embedding Models

We first describe our
proposed framework,
GRAPHEDM, a general

framework for GRL
(Sec- tion 3.1). In
particular, GRAPHEDM
is general enough that
it can be used to

7

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

succinctly de- scribe
over thirty GRL
methods (both
unsupervised and
supervised). We use
GRAPHEDMto introduce
a comprehensive
taxonomy in Section
3.2 and Section 3.3,
which summarizes

exiting works with
shared notations and
simple block diagrams,
making it easier to
under- stand
similarities and
differences between
GRL methods.

7.1 The GraphEDM framework
The GRAPHEDM framework builds on top of the work of Hamilton et al. (2017b), which describes unsupervised network

embedding methods from an encoder-decoder

8

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

perspective.

Figure 2: Illustration of the GRAPHEDM framework. Based

on the supervision available, methods will use some or all

of the branches. In particular, unsupervised methods do

not leverage label decoding for training and only optimize

the similarity or dissimilarity decoder (lower branch). On the

other hand, semi-supervised and supervised methods

leverage the additional supervision to learn models’
parameters (upper branch).

Cruz et al. (2019) also recently proposed a modular

encoder-based framework to describe and compare

unsupervised graph embedding methods. Different from

these unsupervised frameworks, we provide a more

general framework which additionally encapsulates

super- vised graph embedding methods, including ones

utilizing the graph as a regularizer (e.g. Zhuand

Ghahramani (2002)), and graph neural networks such as

ones based on message passing (Gilmer et al., 2017;

Scarselli et al., 2009) or graph convolutions (Bruna et al.,

2014; Kipf andWelling, 2016a).

Input The GRAPHEDM framework takes as input an

undirected weighted graph G =

(V, E), with adjacency matrix W ∈ R|V |×|V |, and optional

node features X ∈ R|V |×d0 . In (semi-

)supervised settings, we assume that we are given

training target labels for nodes

(denoted N), edges (denoted E), and/or for the entire

graph (denoted G). We denote the supervision signal as S

∈ {N, E, G}, as presented below.

Model The GRAPHEDM framework can be

decomposed as follows:

Graph encoder network ENCΘE : R|V |×|V | × R|V |×d0

→ R|V |×d, parameterized by Θ E, which combines the

graph structure with node features (or not) to produce

node embedding matrix Z ∈ R|V |×d as:

Z = ENC(W, X; ΘE).

As we shall see next, this node embedding matrix might

capture different graph prop-erties depending on the

supervision used for training.

Graph decoder network DECΘD : R|V |×d → R|V |×|V |,

parameterized by ΘD, which uses the node embeddings Z to

compute similarity or dissimilarity scores for all node

pairs, producing a matrix Ŵ ∈ R|V |×|V | as:

Ŵ = DEC(Z; ΘD).

Classification network DECΘS : R|V |×d → R|V |×|Y|,

where Y is the label space. This network is used in

(semi-)supervised settings and parameterized by ΘS .

The output is a distribution over the labels yˆS , using

node embeddings, as:

Our GRAPHEDM framework is general (see Fig. 2 for

an illustration). Specific choices of the aforementioned

(encoder and decoder) networks allows GRAPHEDM to

realize specific graphembedding methods. Before presenting

the taxonomy and showing realizations of various methods

using our framework, we briefly discuss an application

perspective.

OutputThe GRAPHEDM model can return a

reconstructed graph similarity or dissim- ilarity matrix Ŵ

(often used to train unsupervised embedding

algorithms), as well as a

output labels y^S for supervised applications. The label

output space Y varies depending on the supervised

application.

Node-level supervision, with yN ^∈ Y|V |, where Y

represents the node label space. If Y is categorical, then

this is also known as (semi-)supervised node

classification (Section 6.2.1), in which case the label

decoder network produces labels for each node

in the graph. If the embedding dimensions d is such that d =

|Y|, then the label decoder network can be just a simple

softmax activation across the rows of Z, produc-

ing a distribution over labels for each node. Additionally,

the graph decoder network might also be used in

supervised node-classification tasks, as it can be used to

regu- larize embeddings (e.g. neighbor nodes should have

nearby embeddings, regardless ofnode labels).

Edge-level supervision, with

ŷ E ∈ Y|V |×|V |, where Y represents the edge label

space. For example, Y can be multinomial in knowledge

graphs (for describing the

then rather than naming the output of the de c oder as ^ ,
we insteaydE follow the nomenclature and position link

prediction as an unsupervised task (Section 4). Then

inlieu of yE ŵ e utilize W , t̂ h e output of the graph

decoder network (which is learned to reconstruct a target

similarity or dissimilarity matrix) to ran potential edges.

the graph classification task (Section 6.2.2), the label

decoder network converts node embeddings into a single

graph labels, using graph pooling via the graph edges

capturedby W . More concretely, the graph pooling

operation is similar to pooling

in standard CNNs, where the goal is to downsample local

feature representations to capture higher-level information.

However, unlike images, graphs don’t have a regular grid

structure and it is hard to define a pooling pattern which

could be applied to every node in the graph. A possible

9

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

way of doing so is via graph coarsening, which groups

similar nodes into clusters to produce smaller graphs

(Defferrard et al., 2016). There exist other pooling

methods on graphs such as DiffPool (Ying et al., 2018b)

or SortPooling (Zhang et al., 2018b) which creates an

ordering of nodes based on their structural rolesin the

graph. Details about graph pooling operators is outside

the scope of this workand we refer the reader to recent

surveys (Wu et al., 2019) for a more in-depthtreatment.

Supervised loss term, LS , which compares the predicted

labels yˆS to the ground truth labels yS. This term
SUP

depends on the task the model is being trained for. For

instance, in semi-supervised node classification tasks (S

=

N), the graph vertices are

split into labelled and unlabelled nodes (V = VL ∪ VU),

and the supervised loss is computed for each labelled

node in the graph:LN (yN, yˆN; Θ) =

where l(·) is the loss function used for classification (e.g.

cross-entropy). Similarly for graph classification tasks (S =

G), the supervised loss is computed at the graph-level

and can be summed across multiple training graphs: G G,

yˆG; Θ) = l(yG , yˆG; Θ).

Graph regularization loss term, LG,REG, which leverages

the graph structure to impose regularization constraints

on the model parameters. This loss term acts as a

smoothing term and measures the distance between the

decoded similarity or dissim- ilarity matrix Ŵ , and a

target similarity or dissimilarity matrix s(W), which

might capture higher-order proximities than the

adjacency matrix itself:

LG,REG(W, Ŵ ; Θ) = d1(s(W), Ŵ) , (1)

where d1(·, ·) is a distance or dissimilarity function.

Examples for such regularization are constraining

neighboring nodes to share similar embeddings, in terms

of their dis- tance in L2 norm. We will cover more examples

of regularization functions in Section 4and Section 5.

Weight regularization loss term, LREG, e.g. for

representing prior, on trainable model parameters for

reducing overfitting. The most common regularization is

L2 regularization (assumes a standard Gaussian prior):
Σ

^

L = αLSSUP(y , yˆ ; Θ) + βLG,REG(W, W ; Θ) +

γLREG(Θ), (2)

where α, β and γ are hyper-parameters, that can be

tuned or set to zero. Note that

graphembedding methods can be trained in a supervised

(α /= 0) or unsupervised (α = 0) fashion.

 Supervised graph embedding approaches leverage

an additional source of information to learn embeddings

such as node or graph labels. On the other hand,

unsupervised network embedding approaches rely on the

graph structure only to learn node embeddings.

A common approach to solve supervised embedding

problems is to first learn embeddingswith an

unsupervised method (Section 4) and then train a

supervised model on the learned embeddings. However,

as pointed by Weston et al. (2008) and others, using a

two-step learning algorithm might lead to sub-optimal

performances for the supervised task, and in general,

supervised methods (Section 5) outperform two-step

approaches.

Taxonomy of encoders

Having introduced all the building blocks of the

GRAPHEDM framework, we now introduce our graph

embedding taxonomy. While most methods we describe

next fall

We divide graph embedding models into four main

categories:

Shallow embedding methods, where the encoder function

is a simple embedding lookup. That is, the parameters of the

model ΘE are directly used as node embed- dings: Note that

shallow embedding methods rely on an embedding lookup

and are therefore transductive, i.e. they generally cannot be

directly applied in inductive settings where the graph

structure is not fixed.

Graph regularization methods, where the encoder

network ignores the graph structure and only uses node

features as input:

Z = ENC(X; ΘE).

As its name suggests, graph regularization methods

leverage the graph structure

through the graph regularization loss term in Eq. (2) (β

=/ 0) to regularize node embeddings.

Graph auto-encoding methods, where the encoder is a

function of the graph structure only:

Z = ENC(W ; ΘE).

Neighborhood aggregation methods, including graph

convolutional methods, where both the node features and

the graph structure are used in the encoder network.

Neighborhood aggregation methods use the graph

structure to propagate informationacross nodes and learn

embeddings that encode structural properties about the

graph:

Historical Context

There is a general two-step process that most machine

learning models adhere to. Initially, they forego the

10

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

need of human feature building in favor of

automatically extracting significant patterns from data.

According to Bengio et al. (2013), this is the part where

representation learning takes place. A second step

involves putting these representations to use in

supervised (like classification) or unsupervised (like
clustering, visualization, and nearest-neighbor search)

applications further down the line. This task

is referred to as downstream processing.3 To

facilitate the downstream process, a good data

representation should be both expressive and concise,

preserving the original data's significant qualities.

Overfitting and other problems induced by the curse of

dimensionality may be mitigated, for example, by using

low-dimensional representations of high-dimensional

datasets. When it comes to GRL, a graph encoder is

used for representation learning, while a graph or label

decoder is employed for jobs further down the line,

such as node classification and link prediction. Graph

encoder-decoder networks have traditionally been used

for manifold learning. It is usual to presume that input

data, even if it exists on a high- dimensional Euclidean

space, is inherently contained on a low-dimensional

manifold. The classic manifold hypothesis describes

this. This inherently low-dimensional manifold is what

manifold learning methods aim to retrieve. A discrete

approximation of the manifold is often constructed

initially, in the form of a graph with edges connecting

adjacent points in the ambient Euclidean space.Graph

distances are a reasonable surrogate for local and global

manifold distances because manifoldsare locally

Euclidean. Secondly, while keeping graph distances as

accurate as feasible, "flatten" this representation of the

graph by learning a non-linear mapping from graph

nodes to points in low- dimensional Euclidean space.

Typically, these representations are more manageable

compared to theinitial high-dimensional ones, and they

may subsequently be used in subsequent ISSN2321-2152

When looking for solutions to the manifold learning

issue, non-linear4 dimensionality reduction strategies

were all the rage in the early 2000s. For example,

spectral approaches are used by Laplacian Eigenmaps

(LE) (Belkin and Niyogi, 2002) to calculate

embeddings, and IsoMap (Tenenbaum et al., 2000) to

maintain global network geodesics by a mix of the

Floyd-Warshall algorithm and the conventional Multi-

dimensional scaling algorithm. In Section 4.1.1, we

outline a few of these techniques that

 use shallow encoders. Despite their significant

influence on machine learning, manifold

dimensionality reduction approaches are not scalable to

big datasets. Consider the time complexity of IsoMAP:

it exceeds quadratic time due to the need to compute all

pairs of shortest pathways. Since the mappings from

node to embeddings are non-parametric, they cannot
generate embeddings for additional datapoints,

which is a potentially more significant drawback.The

issue of graph embedding has seen several proposals

for non- shallow network topologies in recent years.

Our GRAPHEDM framework may be used to define

graph neural networks and graph regularization

networks. When compared to traditional approaches,

GRL models often provide more expressive,

scalable, and generalizable embeddings due to their

use of deep neural networks' expressiveness.
the next sections, we review recent methods for

supervised and unsupervised graphembedding techniques

using GRAPHEDM and summarize the proposed

taxonomy in Fig. 3.

Unsupervised Graph Embedding

Using the taxonomy outlined earlier, we will now

provide a summary of current methods forunsupervised

graph embedding. Without using task-specific labels

for the network or its nodes, theseapproaches map the

graph into a continuous vector space, including its edges

and/or nodes. By learning to rebuild matrices that

measure the similarity or dissimilarity between nodes,

such as the adjacency matrix, some of these approaches

aim to learn embeddings that maintain the network

structure. There are methods that use a contrastive

objective. For example, one could compare nearbynode-

pairs to faraway ones: nodes that are co-visited in short

random walks should have a higher similarity score

than distant ones. Another would compare real graphs

to fake ones: the mutual information between a graph

and all of its nodes should be higher in real graphs than

in fake ones.

Shallow embedding methods

The encoder function in shallow embedding techniques

is a basic embedding lookup; these methods are

transductive graph embedding methods. The shallow

encoder function is simply: for every node vi in V, there

is a corresponding low-dimensional learnable

embedding vector Zi in Rd.The data structure in the

embedding space matches the underlying graph

structure, thanks to learnt node embeddings. Generally

speaking, it's not dissimilar to principal component

11

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

analysis (PCA) and other dimensionality reduction

techniques; however, the input data may not be linear.

Specifically, graph embedding issues may be addressed

usingtechniques for non-linear dimensionality

reduction, which often begin with constructing a

discrete graph from the data in order to approximate the

manifold. We take a look at the distance-based and outer

product-based approachesto shallow graph embedding.

Distance-based methods By using a preset distance function, these approaches maximize embeddings in a way

that keeps points that are close together in the graph (as shown by their graph distances, for example) as near

togetherin the embedding space as feasible. In a formal sense, the decoder network may provide either non-

Euclidean (Section 4.1.2) or Euclidean (Section 4.1.1) embeddings by computing pairwise distance for a certain

distance function d2:

Ŵ = DEC(Z; ΘD)

with Ŵ i j = d2(Zi, Zj)

Figure 3: Taxonomy of graph representation learning methods. Based on what informationis
used in the encoder network, we categorize graph embedding approaches into four cat-

Auto-encoders

12

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

egories: shallow embeddings, graph auto-encoders, graph-based regularization and graph
neural networks. Note that message passing methods can also be viewed as spatial convo-
lution, since messages are computed over local neighborhood in the graph domain. Recip-
rocally, spatial convolutions can also be described using message passing frameworks.

Figure 4: Shallow embedding methods. The encoder is a simple embedding look-up
andthe graph structure is only used in the loss function.

Outer product-based methods These methods on the other hand rely on
pairwisedot-products to compute node similarities and the decoder network can be
written as:

Embeddings are then learned by minimizing the graph regularization loss: LG, R E G(W, Ŵ ;

Θ) = d1(s(W), Ŵ) . Note that for distance-based methods, the function s(·) measures
dissimilar- ity or distances between nodes (higher values mean less similar pairs of nodes),
while in outer-product methods, it measures some notion of similarity in the graph (higher
values mean more similar pairs).

4.1.1

13

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

DISTANCE-BASED: EUCLIDEAN METHODS

In order to optimise Euclidean embeddings, most

distance-based methods aim to minimise the

Euclidean distance between similar nodes.

Nonlinear methods such as Laplacian eigenmaps,

IsoMAP, and local linear embedding are available,

in addition to linear embedding techniques that

generate linear projection subspaces in low

dimensions, such as principal component analysis

(PCA) and maximum degree of separation (MDS).

Although these methods were first introduced for
dimensionality reduction or visualisation, they may

be easily used for graph embedding as well.

Multi-Dimensional Scaling

The majority of distance-based approaches to
optimising Euclidean embeddings seek to reduce

the Euclidean distance between nodes that are

comparable. Laplacian eigenmaps, IsoMAP, and

local linear embedding are nonlinear approaches;

principal component analysis (PCA) and

maximum degree of separation (MDS) are linear

embedding techniques that produce low-

dimensional linear projection subspaces. These

techniques may be readily used to graph

embedding as well, despite their initial

introduction for dimensionality reduction or

visualisation.

ij = d2(Zi, Zj) = ||Zi − Zj||2.

ij s(W)2
To rephrase, mMDS finds an embedding

configuration that maintains distances in the low-

dimensional embedding space using the stress cost

function, which is a residual sum of squares. The

mMDS and PCA

dimensionality reduction methods are identical
when a higher-dimensional representation's

Euclidean distances are used to compute the

dissimilarities. Finally, there are variants of this

method. A low-rank decomposition of the

gramme matrix allows for closed-form execution

of classical MDS (cMDS), and non-

15.1.1 NODE CLASSIFICATION

16. 16. Node classification,

which seeks to create node

representations that can

accurately anticipate their

labels, is a crucial

supervised graph

application. One possible

use for node labels in

citation networks is to

denote scientific topics; in

social networks, they may

denote gender or other

attributes. Since labelling

massive graphs requires a

significant time and

financial investment,

semi-supervised node

classification is a common

use case. In semi-

supervised settings, the

goal is to forecast

unlabeled node properties

using node links, with just

a small fraction of nodes

being labelled. It is

deemed transductive since

there is only one partially

labelled fixed graph in this

setting. Alternatively, you

may use inductive node

classification, which

involves figuring out how

to classify nodes in various

networks. A node's

performance on

categorised nodes tasks

may be substantially

enhanced if its features

accurately describe the

objective label. Modern

methods like GCN (Kipf

and Welling, 2016a) and

GraphSAGE (Hamilton et

al., 2017a) have achieved

state- of-the-art

performance on multiple

node classification

benchmarks by combining

14

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

structural data with

semantic information

obtained from features. On

the other hand, methods

like random walks on

graphs fail miserably at
these tasks because they

don't employ feature

information.

21.1.1 GRAPH CLASSIFICATION

17. Graph classification is an example of a

supervised application; it takes an input graph and

aims to predict labels at the graph level. Graph

classification issues are essentially inductive since

new graphs are introduced throughout testing. As

for other popular options, there are biochemical

pursuits and online social networks. Molecular

graphs have widespread use in biology. Nodes in

these graphs may be feature vectors that encode

the number of atoms in a 1-hot fashion, and edges

between nodes can represent bonds, with the

feature vector indicating the kind of bond.

(Debnath et al., 1991) MUTANG is a task-

dependent graph-level label that shows if a drug is

mutagenic to bacteria. Online social networks

often use the node metaphor, with connections and

interactions depicted by the edge metaphor. Graph

categorization tasks on Reddit, for instance,

include a large number of graphs (Yanardag and

Vishwanathan, 2015). When one person responds

to another's comment, for example, an edge will

connect the two nodes in the discussion thread

graph. Finding the community (sub-reddit) where

a discussion took place is the goal, given a

comment graph.

Graph classification tasks need a new sort of

pooling to aggregate data at the node and graph

levels, in contrast to edge prediction and node

classification, which both use pooling at the edge

level. Extending the idea of pooling to any kind of

graph is a difficult and continuing area of research,

as mentioned before. We want the pooling

mechanism to be unaffected by node order. Some

methods use simple pooling, such as adding up all

the latent vectors at the network node level or

taking the mean of them (Xu et al., 2018).

Approaches that use differentiable pooling include

Ying et al., 2018b; Cangea et al., 2018; Gao and Ji,

2019; and Lee et al., 2019. To name a few.

Supervisorial techniques for learning graph-level

representations are provided by Tsitsulin et al.

(2019), Al-Rfou et al. (2019), and Tsitsulin et al.

(2020a), but other unsupervised methods are also

available. analysed as graph kernels (GKs) by
Viswanathan et al. (2010) and Kriege et al. (2020).

Although GKs are not our primary concern, we do

touch on their links to GRAPHEDM here. Graph-

level tasks,

such graph categorization, are suitable for GKs.

In order to convert any two graphs into a scalar,

GK may automatically apply a similarity

function. Counting the number of walks (or

pathways) that two graphs have in common is

one way that traditional GKs calculate graph

similarity. For example, each walk may be

stored as a seriesof node labels. Common practice

dictates using node degrees as labels in the

absence of explicit labels. The

capacityof GKs to identify (sub-)graph

isomorphism is a common metric for analysis.

When ordering of nodes is ignored, two (sub-

)graphs are considered isomorphic if they are

identical. According to the 1-dimensional

Weisfeiler-Leman(1-WL) heuristic, two sub-

graphs are considered isomorphic since sub-

graph isomorphism is NP-hard. In each graph,

histograms are used to tally the statistics of the

nodes (e.g., how many nodes with the label "A"

have an edge to nodes with the label "B"). If two

graphs' histograms, obtained from the same 1-

hop neighborhood, are equal, thenthe graphs are

considered isomorphic according to the 1-WL

heuristic. An example of a GNN that has been

shownto achieve the 1-WL heuristic is the Graph

Isomorphism Network (GIN; Xu et al., 2018).

This means that GIN canonly map two graphs to

the same latent vector if they are considered

isomorphic according to the 1-WL heuristic. In

some newer studies, GKs and GNNs are used

together. Using the similarity of the "tangent

space" of the goal with respect to the Gaussian-

initialized GNN parameters, Du et al. (2019)

models the similarity of two graphs, andChen et

al. (2020) extracts walk patterns. There isn't any

GNN training in either (Du et al., 2019; Chen et

al., 2020).Instead, kernel support vector

machines and other kernelized algorithms are

15

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

used to the pairwise Gram matrix during

training. Therefore, our GCF and GRAPHEDM

frameworks are not well-suited to include these

methodologies. However, there are other

approaches that don't rely on indirectly

computing graph-to-graph similarity scalar
scoresbut instead directly map graphs to high-

dimensional latent spaces. One example is

Morris et al.'s (2019) k-GNN network, which is

deliberately coded as a GNN but can actually

implement the k-WL heuristic (which is

identical to 1-WL but where histograms are

produced up-to k-hop neighbors). Therefore, our

GCF and GRAPHEDM frameworks can define

the k-GNN model classes.

Conclusion and Open Research Directions
In this review, we laid forth a common procedure

for evaluating ML models that have been trained

on graph- structured data. Our enhanced

GRAPHEDM system, which was previously used

for unsupervised network embedding, now

incorporates deep graph embedding methods,

graph auto-encoders, graph regularisation

approaches, and graph neural networks.

Furthermore, we introduced a graph convolution

framework (GCF) that allows us to characterise

and compare convolution-based graph neural

networks, including spectral and spatial graph

convolutions. Our comprehensive taxonomy of

GRL approaches, presented using this paradigm,

included over 30 supervised and unsupervised

strategies for graph embedding.If this survey is

successful in its aims, it will hopefully motivate

researchers to dig further into GRL, which should

eventually provide answers to the issues these

models are facing. As far as taxonomy is

concerned, there are 19. Here, we laid the

groundwork for a uniform method of comparing

ML models that have been trained on graph-

structured data. Now including deep graph

embedding techniques, graph auto-encoders,

graph regularisation approaches, and graph neural

networks, our improved GRAPHEDM system

may be utilised for supervised network embedding

as well as unsupervised. We also presented a graph

convolution framework (GCF) for comparing and

characterising graph neural networks that use

convolution, as well as spectral and spatial graph

convolutions. More than 30 supervised and

unsupervised solutions for graph embedding were

included in our exhaustive taxonomy of GRL

approaches, which was presented using this

paradigm.With any luck, the results of this poll

will encourage further investigation into
method for every specific situation. Additionally,

it is worth noting that scholars who have only The
taxonomy may help researchers identify
appropriate methodologies for data analysis,
organise their questions, find relevant literature,
and set trustworthy baselines for comparison. For
all the success that GRL methods have had with
node categorization and connection prediction,

there remain a number of problems that need
fixing. The next section covers the research
opportunities and challenges associated with graph
embedding models.

Evaluation and benchmarks

The methods discussed in this study are often
evaluated using industry-standard standards for

node categorization or link prediction. It is

common practice to compare graph embedding

methods to citation networks in order to

demonstrate the argument. A concern with these

small citation standards, as shown in recent study

(Shchur et al., 2018), is that the results could vary

substantially based on the datasets' splits or

training procedures (such early stopping). In order

to enhance GRL techniques, it is essential to use

robust and consistent evaluation procedures and to

broaden the area of assessment beyond standards

for link prediction and small node classification.

Examples of recent advancement in this method

include graph embedding libraries (Fey and

Lenssen, 2019; Wang et al., 2019; Goyal and

Ferrara, 2018a), new graph benchmarks with

leaderboards (Hu et al., 2020; Dwivedi et al.,

2020), and other similar works. Similarly, Sinha et

al. (2020) proposed a set of first-order logic tasks

to evaluate GNNs' reasoning abilities.

Fairness in Graph Learning A new field known as

Fairness in Machine Learning is emerging to

address the issue of models associating'sensitive'

attributes with the model's anticipated outcome

16

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

(Mehrabi et al., 2019). For problems with graph

learning, these factors may be especially important

because of the correlation between the output and

the graph's structure (the edges) and the nodes'

feature vectors. According to Bose Hamilton

(2019), the most common way to include fairness
constraints into models is via adversarial learning.

To make sure the model doesn't have any bias

when it comes to the sensitive feature(s), you may

use this strategy to GRL. However, just how much

prejudice can be eradicated by adversarial methods

is an uncertain matter. Even with a combination of

debiasing techniques, the task at hand could be

challenging to complete (Gonen and Goldberg,

2019). Recent research in the area has

concentrated on proving assurances for debiasing

GRL (Palowitch and Perozzi, 2019).

Application to large and realistic graphs When

dealing with datasets that include tens of thousands

to hundreds of thousands of nodes, graph learning

approaches are usually reserved. But there are real-

world graphs that are far larger, with billions of

nodes. Scalable solutions for large graphs need a

Distributed Systems setup with several processors,

such as MapReduce (Dean and Ghemawat, 2008;

Lerner et al., 2019; Ying et al., 2018a). Is it possible

for a researcher to use a home computer to

implement a learning strategy on a massive graph

that exceeds the capacity of random access

memory (RAM) but still fits on a single hard drive

(e.g., with a one terabyte size)? Compare it to other

approaches that have been proposed to solve a

computer vision problem utilising a big dataset

(Deng et al., 2009; Kuznetsova et al., 2020). You

may use RAM for whatever model you like.

learned on desktop PCs, no matter how big the
dataset is. Some graph embedding models may

have a hard time fixing this problem, especially if

their parameters increase in size along with the

graph's nodes.At times, it could be tough for

businesspeople to choose the proper graph to use

as input. In their description of the Google system

Grale, Halcrow et al. (2020) demonstrate how it

learns the correct graph from several attributes.

When learning graphs from large datasets, Grale

use similarity search techniques, including locality

sensitive hashing. In order to facilitate end-to-end

learning, Rozemberczki et al. (2021) upgraded the

Grale model by include an attention

We expect new mathematical and practical

challenges to arise from learning algorithms for

large networks that can be executed on a single

machine. We hope that academics will give this

field the attention it deserves so that neurology

researchers and other non-specialist practitioners

may utilise these learning techniques to assess the

sub-graph of the human brain, which is made up

of neurons and synapses.

Molecule generation Molecular biologists may be

able to save time and money by learning on

graphs, which might revolutionise their work.

Several approaches have been suggested by

researchers to forecast the quantum characteristics

of molecules (Gilmer et al., 2017; Duvenaud et al.,

2015) and to create molecules with certain desired

features (Liu et al., 2018; De Cao and Kipf, 2018;

Li et al., 2018; Simonovsky and Komodakis, 2018;

You et al., 2018). In (Elton et al., 2019), a survey

of current approaches is provided. Jin et al. (2018),

Ragoza et al. (2017), and Feng et al. (2018) are

only a few examples of the approaches that are

involved in drug design, while others are focused

with producing materials with certain qualities,

such as conductivity and malleability.

Combinatorial optimization

Computationally difficult problems arise in many
areas, including routing science, cryptography,

decision- making, and planning, among many

others. The methods used to determine the optimal

solution to computationally challenging issues are

not very scalable. For a rundown of the methods

that have lately garnered interest in handling

combinatorial optimisation problems using

machine learning techniques, such

or NP-hard problems, graph embeddings have
recently attracted attention (Khalil et al., 2017;

Nowak et al., 2017; Selsam et al., 2018; Prates et

al., 2019). In reality, many problems may be

represented in terms of graphs; graphs provide a

suitable representation for many challenging

difficulties, including SAT and vertex cover.

17

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

Computingly challenging problems may be solved

using data-driven approaches, such as finding out

whether a particular instance (e.g., node) is a

portion of the optimal solution out of several

instances of the problem. Seek for tasks in prior

research on optimising graph partitions that aim to
achieve a goal (e.g., the smallest conductance cut)

(Bianchi et al., 2020; Tsitsulin et al., 2020b).

Because GNNs are better at depicting graphs than

normal neural networks (e.g., permutation

invariance), these approaches all begin with

GNNs. This is because GNNs have relational

inductive biases. Here are several solutions that still

beat Whilst these methods rely on data, GNNs have

shown potential when used to more complex

problems (Nowak et al., 2017; Prates et al., 2019).

Lamb et al. (2020) offers a thorough synopsis of

GNN-based combinatorial optimisation methods

in their most recent research on neural symbolic

learning.

Non-Euclidean embeddings The underlying space

geometry is an important part of graph

embeddings, as we saw in Sections 4.1.2 and

5.6. All graphs are discrete complex, non-
Euclidean structures with high dimensions; however,
there is currently no simple method for encoding such
data into embeddings with low dimensions that
maintainthe graph topology (Bronstein et al., 2017).
Hyperbolic and mixed-product space embeddings are
two examples of non-Euclidean embeddings that have
recently attracted attention and made strides in the
field of learning (Gu et al., 2018; Nickel and Kiela,
2017).In comparison to their Euclidean counterparts,
these non-Euclidean embeddings have the potential
for embeddings that are more expressive. For
example, compared to Euclidean embeddings,
hyperbolic embeddings exhibit significantly less
distortion when representinghierarchical data (Sarkar,
2011). This has led to state-of- the-art outcomes in
numerous contemporary applications, including
linguistics tasks (Tifrea et al., 2018; Le et al., 2019)

appropriate shape for an input graph. Anintriguing

area for future research is the process of selecting

or learning the appropriate geometry for a specific

discrete graph, even though there are already

discrete measures forthe graphs' tree-likeliness,

such as Gromov's four-point condition

(Jonckheere et al., 2008;Abu-Ata and Dragan,

2016; Chen et al., 2013; Adcock et

al., 2013).Assurances based on theory Recent
developments in graph embedding model design
haveoutperformed state-of-the-art methods in
several domains. Nevertheless, our knowledge ofthe
theoretical promises and constraints of graph
embedding models is currently restricted.Xu et al.
(2018), Verma and Zhang (2019), Morris et al. (2019),
and Garg et al. (2020) allapply current findings from
learning theory to the issue of GRL, which is a new field
of study on GNN representational power. If we want to
know what the theoretical benefits and drawbacks of
graph embedding techniques are, we need to build
theoretical frameworks.

References
Written by Feodor F. Dragan and Muad Abu-Ata.
Analysis of real-world network structures
approximating metric
trees.With reference to: Networks, 2016; 67(1):

49-68.Sami Abu-El-Haija, Rami Al-Rfou, and

Brian Perozzi. Improving edge representations

using low-rank asymmetric projections. This is the

1787–1796th page of the proceedings from the

2017 ACM Conference on Information and

Knowledge Management (CIKM '17). Authors

Bryan Perozzi, Alexander A. Alemi, Sami Abu-El-

Haija, and Rami Al-Rfou contributed to the work.

Use caution: Discovering embeddings of nodes by

analysing graphs. This is the 2018 edition of

Advances in

Neural Information ,

 specifically pages

 9180-9190.

The following individuals are taking part: Aram

Galstyan, Bryan Harutyunyan, Bryan Perozzi,

Nazanin Alipourfard, Kristina Lerman, Greg Ver

Steeg, and Amol Kapoor. By merging sparse

neighbourhoods, mixhop constructs higher-order

graph convolutional networks. This is the 2019

International Conference on Machine Learning,

page numbers 21–29. Written by Feodor F. Dragan

and Muad Abu-Ata. Analysis of real-world

network structures approximating metric

trees.With reference to: Networks, 2016; 67(1): 49-

68.Sami Abu-El-Haija, Rami Al-Rfou, and Brian

Perozzi. Improving edge representations using

low-rank asymmetric projections. This is the

1787–1796th page of the proceedings from the

2017 ACM Conference on Information and

18

ISSN2321-2152

www.ijmece .com

Vol 7, Issue.2 April 2019

Knowledge

Management

(CIKM

'17). Authors Bryan Perozzi, Alexander A. Alemi,
Sami Abu-El-Haija, and Rami Al-Rfou

contributed to the work. Use caution: Discovering

embeddings of nodes by analysing graphs. This is

the 2018 edition of Advances in Neural

Information Processing Systems, specifically

pages 9180-9190.The following individuals are

taking part: Aram Galstyan, Bryan Harutyunyan,

Bryan Perozzi, Nazanin Alipourfard, Kristina

Lerman, Greg Ver Steeg, and Amol Kapoor. By

merging sparse neighbourhoods, mixhop

constructs higher-order graph convolutional

networks. This is the 2019 International

Conference on Machine Learning, page numbers

21–29. Subjects: Blair

D. Sullivan, Aaron B. Adcock, and Michael W.

Mahoney. The structure of large-scale information

and social networks resembles a tree. January

2013: Pages 1–10 in Volume 13, Issue 1. Data

Mining 2013: IEEE International Conference

on.They were Amr Ahmed, Vanja Josifovski,

Alexan-der J. Smola, Nino Shervashidze, and

Shravan Narayanamurthy. Organic graph

factorization on a distributed, enormous scale.

Pages 37–48 of the 22nd International Conference

on the World Wide Web is where this was

included. 2013 (IEEE). Dustin Zelle, Bryan

Perozzi, and Rami Al-Rfou were all participants.

Learned graphs depict deep divergence graph

kernels, abbreviated as Ddgk. Proceedings of the

2019 World Wide Web Consortium Conference on

the Internet, 2019. Paolo Mier, Gregorio Alanis-

Lobato, and Miguel A. Andrade-Navarro wrote it.

How to efficiently use the Laplacian of complex

networks to integrate into hyperbolic space? The

article was published in Scientific Reports on

March 8, 2016. Alves, Luis B. An asynchronous

perceptron learning rule with feedback that is

combinatorial! Pages 609–618 of Volume 2, First

International Conference on Neural Networks

Proceedings. IEEE, 1987. These three individuals

are Alan Allen, Ivana Balazevic, and Timothy

Hospedales "Multi-relational Poincaré graph

embeddings" (March 2019), pages 4463–4473,

Advances in Neural Information Processing

Systems, vol. Among those involved are Matt Lai,

Razvan Pascanu, Peter Battaglia, and Danilo

Jimenez Rezende. Interconnected structures for

learning about things, relationships, and physical

phenomena. Advances in Neural Information

Processing Systems, 2016 edition, pages 4502-

4510. Graph networks, deep learning, and

relational inductive biases are all written by these

people: Everyone from Peter W. Battaglia and

Jessica B. Hamrick to Victor Bapst, Alvaro

Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz

Malinowski, Andrea Tacchetti, David Raposo,

Adam

