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Estimated Data Set for Partially Observed System Approximate 
Planning and Reinforcement Learning 

Y. Prasada Reddy 

Abstract 
Graph representation learning (GRL) has seen a dramatic increase in interest as of late. The availability of labelled 

data has led to the development of three main kinds of GRL techniques. Network embedding is the first; it's 

concerned with the unsupervised learning of representations of relationship structures. The second one is known 

as graph regularised neural networks, and it incorporates a regularisation objective into neural network losses to 

teach semi-supervised learning via the use of graphs. To conclude, graph neural networks can learn differentiable 

functions across discrete topologies with any structure. Intriguingly, despite the relative popularity of these 

domains, there has been hardly any attempt to combine the three paradigms. Our goal here is to provide a bridge 

between network embedding, graph regularisation, and graph neural networks. Our comprehensive taxonomy of 

GRL techniques is an attempt to unite several fields of research. We focus on the GRAPHEDM framework, which 

brings together popular techniques for learning graph representations using semi-supervised and unsupervised 

approaches. These methods include GraphSage, GCN, GAT, DeepWalk, and node2vec. To show how 

generalizable GRAPHEDM is, we used this framework to accommodate over 30 current approaches. We believe 

this consolidated view serves a dual purpose: first, it sets the stage for further research in the area, and second, it 

clarifies the reasoning behind these methods. 
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1. Introduction 

2. 2. Building models for complex 

structured data sets is a challenging task. 

There have been a great deal of 

successful models developed for 

structured data specified on discretized 

Euclidean domains within the last 

decade. Recurrent neural networks are 

used to represent sequential data, such as 

text or videos, as an example. The 

networks' success in machine translation 

and speech recognition tests is evidence 

of their ability to efficiently represent 

sequential data. Another example is 

convolutional neural networks (CNNs), 

which by parameterizing neural 

networks according to structural priors 

like shift-invariance have achieved 

amazing performance in pattern 

recognition applications like image 

classification and speech recognition. 

For certain types of data with simple 

relational structures, such as sequential 

or pattern-based data, these outstanding 

accomplishments have only proved 

useful. It is necessary to extract data from 

systems where the data is not always 

regular in order to understand the 

interaction between items, as 

complicated connection structures often 

arise. In addition to semi-supervised 

learning, social networks, 

computational  
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When it comes to representing complicated relational data, 

domains often turn to graphs, which are universal data 

structures comprised of nodes and edges (Gilmer et al., 2017; 

Stark et al., 2006; Konstas et al., 2009; Garcia and Bruna, 

2018). It is challenging to build networks with robust 

structural priors for graph-structured data due to the fact that 

graph topologies aren't always constant and might vary 

substantially between graphs and even amongst nodes 

within the same graph. In particular, operations such as 

convolutions do not work on graph domains that are not 

regular. For instance, you may apply the same filter weights 

across the board since every pixel in 

a picture has the same neighbourhood structure. But there 

can be no ordering of nodes (Fig. 1) since each node in a 

network may have its own unique neighbourhood structure. 

Also, geometric priors (such shift invariance) employed in 

Euclidean convolutions may not work in non- Euclidean 

domains (such domains may not even allow translations to 

be specified). 

3. In reaction to these challenges, research into 

Geometric Deep Learning (GDL) arose; GDL aims to 

apply deep learning algorithms to data that is not 

geometrically regular. Due to the prevalence of graphs 

in practical contexts, many are enthusiastic about 

applying machine learning methods to graph-structured 

data. One way to describe graph-structured data is via 

learned embeddings, which are low-dimensional 

continuous vector representations. GRL approaches are 

one example of this. Typically, GRL learning tasks may 

be either supervised (or semi-supervised) or 

unsupervised. The first set of guidelines is predicated 

on the concept of acquiring low- dimensional 

geometrical representations that preserve the initial 

graph topology. The second set of predictors also learns 

to use low-dimensional geometrical representations for 

specific downstream prediction tasks like node or graph 

classification. Various signals described on graphs, or 

node properties, are usually used as inputs in the 

supervised setting, as opposed to the unsupervised 

environment, where inputs are generally graph 

structures. The underlying discrete graph domain can 

stay stable in a transductive learning context, but it can 

change in an inductive learning scenario (like when 

trying to predict molecular attributes where each 

molecule is a graph). Finally, it's worth noting that most 

supervised and unsupervised methods learn 

representations in geometry-based vector spaces, but 

that interest in learning representations that are not 

based on Euclidean geometry has recently increased. 

The goal of this learning style is to gain understanding 

of non-geometric embedding spaces, including 

spherical or hyperbolic spaces. A continuous 

embedding space that mimics the underlying discrete 
structure of the input data is the main focus of this study 

(e.g., hyperbolic space is a continuous version of trees; 

Sarkar, 2011). 
Given the exponential growth of the GRL area, we believe it 

is essential to unify and clarify these 

methods within a unified and accessible framework. With 

any luck, this paper will help readers have a better grasp on 

the many ways in which deep learning models use graph 

structure by offering a thorough summary of representation 

learning approaches for graph-structured data. 

Several learning questionnaires using graph 

representation are accessible. The issue of shallow 

network embedding and auto-encoding techniques has 

been thoroughly reviewed in several surveys. (Cai et 

al., 2018; Chen et al., 2018a; Goyal and Ferrara, 2018b; 

Hamilton et al., 2017b; Zhang et al., 2018a) are 

publications that we suggest for this. Secondly, a 

thorough evaluation of deep learning techniques for 

non-Euclidean data, such manifolds or graphs, is given 

by Bronstein et al. (2017). Thirdly, several recent 

studies have explored methods that apply deep learning 

to graphs, namely graph neural networks (Battaglia et 

al., 2018; Wu et al., 2019; Zhang et al., 2018c; Zhou et 

al., 2018). Instead of forming connections across 

different domains of graph representation learning, the 

majority of These studies narrow their emphasis to only 

one. Graph Encoder Decoder Model (GRAPHEDM) is 

an overarching paradigm that categorises existing 

research into four key areas: (i) techniques for shallow 

embedding, (ii) methods for auto- encoding, (iii) 

methods for graph regularisation, and (iv) approaches 

for graph neural networks (GNNs). Hamilton et al. 

(2017b) presented an encoder-decoder model, which 

this framework builds upon.Additionally, we provide a 

Graph Convolution Framework (GCF) to describe 

GNNs 
We may compare and analyse several GNNs with different 

designs, as stated by 

Veliˇckovi'c et al. (2018). Some of these GNNs employ 

self-attention as a neighbourhood aggregation function, 

while others work in the Graph Fourier1 domain. In 

order to help readers better grasp the various graph-
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based learning techniques, this thorough summary of 

current research aims to highlight their commonalities 

and distinctions, as well 

as its potential expansions and limitations. But our poll 

is different from the others in three key respects: 
We introduce a general framework, GRAPHEDM, to 
describe a broad range of super- vised and unsupervised 
methods that operate on graph-structured data, namely 

shal- low embedding methods, graph regularization 
methods, graph auto- encoding methods and graph neural 
networks. 
Our survey is the first attempt to unify and view these 
different lines of work fromthe same perspective, and we 
provide a general taxonomy (Fig. 3) to understand 
differences and similarities between these methods. In 
particular, this taxonomy en- 

 
 

 

 
(a) Grid (Euclidean). (b) Arbitrary graph (Non-Euclidean). 

Figure 1: An illustration of Euclidean vs. non-Euclidean graphs. 

stands for over 30 distinct GRL algorithms. A detailed taxonomy may help us comprehend the distinctions 
between different tactics. 

Link prediction and node classification are two of 
the important graph applications that our open-

source GRL library offers. The library also 

features state-of-the-art GRL algorithms. At 

https://github.com/google/gcnn- survey-paper, 

you may discover our implementation.Anyone 

may come and see it.Survey administration In 

Section 2, we go over some basic graph principles 

and provide a clear explanation of the problem 

context for GRL. In Section 2.2.1, the role of node 

features in GRL and their connection to supervised 

GRL are discussed. In Section 2.2.2, inductive and 

transductive learning are defined. In Section 

2.2.3.1, positional and structural embeddings are 

differentiated. Finally, in Section 2.2.4, supervised 

and unsupervised embeddings are defined. We go 

on to explain what these key ideas in GRL are and 

how they vary from one another. The third section 

introduces GRAPHEDM, a general framework 

that may be used in both inductive and 

transductive learning settings to specify 

supervised and unsupervised GRL methods, 

regardless of whether they include or do not 

include any nodes. Based on GRAPHEDM, which 

includes over thirty modern GRL models, we 

provide a thorough taxonomy of GRL methods 

(Fig. 3). In Section 5, we describe supervised 

approaches, and in Section 4, we describe 

unsupervised methods, using this taxonomy. 

Graph applications are reviewed in Section 6, 

which is the last section. 

3. Preliminaries 
4. Graph representation learning 

approaches attempt to address 
the generalized network 
embeddingissue; for an 
overview, see Table 1. Here, we 
offer the notation used 
throughout the article. 
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6.1 Definitions 
 Notation Meaning 

 
Abbreviations 

GRL 

GRAPHEDM 

GNN 

GCF 

Graph Representation 

Learning Graph Encoder 

Decoder Model Graph Neural 

Network 

Graph Convolution Framework 

 
 
 
 

 
Graph notation 

G = (V, E) 

vi ∈ V 

dG(·, 

·) 

deg(·) 

D ∈ R|V |×|V | 

W ∈ R|V |×|V 

|  W̃  ∈ R|V 

|×|V | 

A ∈ {0, 1}|V |×|V | 

L ∈ R|V |×|V | 

˜L ∈ R|V |×|V | 

Lrw ∈ R|V |×|V | 

Graph with vertices (nodes) V and edges E 

Graph vertex 

Graphdistance (length of shortest path) 

Nodedegree Diagonal degree matrix 

Graph weighted adjacency matrix 

Symmetric normalized adjacency matrix (W̃ = D−1/2WD−1/2) 
Graph unweighted weighted adjacency matrix 

Graph unnormalized Laplacian matrix (L = D − W ) Graph 

normalized Laplacian matrix ( L˜ = I − D−1/2WD−1/2) 

Random walk normalized Laplacian (Lrw = I − D−1W ) 
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Table 1: Summary of the notation used in the paper. 

 
 
 
 
 
 
 
 
 
 

 
GRAPHEDM notation 

d0 

X ∈ R|V |×d0 

d 

Z ∈ R|V |×d 

dl 

Hl ∈ R|V |×dÆ 

Y 

yS ∈ R|V |×|Y| 

yˆS ∈ R|V |×|Y| 

s(W ) ∈ R|V |×|V 

| Ŵ  ∈ R|V |×|V | 

ENC(·; ΘE) 

DEC(·; ΘD) 
DEC(·; ΘS) 
LS  (yS, yˆS; Θ) 

SUP 

LG,REG(W, Ŵ  ; Θ) 

LREG(Θ) 

d1(·, ·) 

d2(·, ·) 

|| · ||p 

|| · ||F 

Input feature dimension 

Node feature matrix 

Final embedding dimension 

Node embedding matrix 

Intermediate hidden embedding dimension at layer l 

Hidden representation at layer l 

Label space 

Graph(S = G) or node (S = N) ground truth labels Predictedlabels 

Target similarity or dissimilarity matrix in graph regularization 

Predicted similarity or dissimilarity matrix 

Encoder network with parameters ΘEGraph 

decoder network with parameters ΘD Label 

decoder network with parameters ΘS 

Supervised loss 

Graph regularization loss 

Parameters’ regularization loss 

Matrix distance used for to compute the graph regularization loss 

Embedding distance for distance-based decoders 

p−norm 
Frobenuis norm 

 

7. A Taxonomy of Graph 
Embedding Models 

We first describe our 
proposed framework, 
GRAPHEDM, a general 

framework for GRL 
(Sec- tion 3.1). In 
particular, GRAPHEDM 
is general enough that 
it can be used to 
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succinctly de- scribe 
over thirty GRL 
methods (both 
unsupervised and 
supervised). We use 
GRAPHEDMto introduce 
a comprehensive 
taxonomy in Section 
3.2 and Section 3.3, 
which summarizes 

exiting works with 
shared notations and 
simple block diagrams, 
making it easier to 
under- stand 
similarities and 
differences between 
GRL methods. 

 

7.1 The GraphEDM framework 
The GRAPHEDM framework builds on top of the work of Hamilton et al. (2017b), which describes unsupervised network 

embedding methods from an encoder-decoder 
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perspective. 

Figure 2: Illustration of the GRAPHEDM framework. Based 

on the supervision available, methods will use some or all 

of the branches. In particular, unsupervised methods do 

not leverage label decoding for training and only optimize 

the similarity or dissimilarity decoder (lower branch). On the 

other hand, semi-supervised and supervised methods 

leverage the additional supervision to learn models’ 
parameters (upper branch). 

 

Cruz et al. (2019) also recently proposed a modular 

encoder-based framework to describe and compare 

unsupervised graph embedding methods. Different from 

these unsupervised frameworks, we provide a more 

general framework which additionally encapsulates 

super- vised graph embedding methods, including ones 

utilizing the graph as a regularizer (e.g. Zhuand 

Ghahramani (2002)), and graph neural networks such as 

ones based on message passing (Gilmer et al., 2017; 

Scarselli et al., 2009) or graph convolutions (Bruna et al., 

2014; Kipf andWelling, 2016a). 

Input  The GRAPHEDM framework takes as input an 

undirected weighted graph G = 

(V, E), with adjacency matrix W ∈ R|V |×|V |, and optional 

node features X ∈ R|V |×d0 . In (semi- 

)supervised settings, we assume that we are given 

training target labels for nodes 

(denoted N ), edges (denoted E), and/or for the entire 

graph (denoted G). We denote the supervision signal as S 

∈ {N, E, G}, as presented below. 

Model The GRAPHEDM framework can be 

decomposed as follows: 

Graph encoder network ENCΘE : R|V |×|V | × R|V |×d0 

→ R|V |×d, parameterized by Θ E, which combines the 

graph structure with node features (or not) to produce 

node embedding matrix Z ∈ R|V |×d as: 

Z = ENC(W, X; ΘE). 

As we shall see next, this node embedding matrix might 

capture different graph prop-erties depending on the 

supervision used for training. 

Graph decoder network DECΘD : R|V |×d → R|V |×|V |, 

parameterized by ΘD, which uses the node embeddings Z to 

compute similarity or dissimilarity scores for all node 

pairs, producing a matrix Ŵ  ∈ R|V |×|V | as: 

Ŵ  = DEC(Z; ΘD). 

Classification network DECΘS : R|V |×d → R|V |×|Y|, 

where Y is the label space. This network is used in 

(semi-)supervised settings and parameterized by ΘS . 

The output is a distribution over the labels yˆS , using 

node embeddings, as: 

 

Our GRAPHEDM framework is general (see Fig. 2 for 

an illustration). Specific choices of the aforementioned 

(encoder and decoder) networks allows GRAPHEDM to 

realize specific graphembedding methods. Before presenting 

the taxonomy and showing realizations of various methods 

using our framework, we briefly discuss an application 

perspective. 

 

OutputThe GRAPHEDM model can return a 

reconstructed graph similarity or dissim- ilarity matrix Ŵ 

(often used to train unsupervised embedding 

algorithms), as well as a 

output labels y^S for supervised applications. The label 

output space Y varies depending on the supervised 

application. 

 

Node-level supervision, with yN ^∈ Y|V |, where Y 

represents the node label space. If Y is categorical, then 

this is also known as (semi-)supervised node 

classification (Section 6.2.1), in which case the label 

decoder network produces labels for each node 

in the graph. If the embedding dimensions d is such that d = 

|Y|, then the label decoder network can be just a simple 

softmax activation across the rows of Z, produc- 

ing a distribution over labels for each node. Additionally, 

the graph decoder network might also be used in 

supervised node-classification tasks, as it can be used to 

regu- larize embeddings (e.g. neighbor nodes should have 

nearby embeddings, regardless ofnode labels). 
 

Edge-level supervision, with 

ŷ E   ∈ Y|V |×|V |, where Y represents the edge label 

space. For example, Y can be multinomial in knowledge 

graphs (for describing the 

then rather than naming the output of the de c oder as ^ , 
we insteaydE follow the nomenclature and position link 

prediction as an unsupervised task (Section 4). Then 

inlieu of yE ŵ e  utilize W , t̂ h e  output of the graph 

decoder network (which is learned to reconstruct a target 

similarity or dissimilarity matrix) to ran potential edges. 

the graph classification task (Section 6.2.2), the label 

decoder network converts node embeddings into a single 

graph labels, using graph pooling via the graph edges 

capturedby W . More concretely, the graph pooling 

operation is similar to pooling 

in standard CNNs, where the goal is to downsample local 

feature representations to capture higher-level information. 

However, unlike images, graphs don’t have a regular grid 

structure and it is hard to define a pooling pattern which 

could be applied to every node in the graph. A possible 
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way of doing so is via graph coarsening, which groups 

similar nodes into clusters to produce smaller graphs 

(Defferrard et al., 2016). There exist other pooling 

methods on graphs such as DiffPool (Ying et al., 2018b) 

or SortPooling (Zhang et al., 2018b) which creates an 

ordering of nodes based on their structural rolesin the 

graph. Details about graph pooling operators is outside 

the scope of this workand we refer the reader to recent 

surveys (Wu et al., 2019) for a more in-depthtreatment. 

 

Supervised loss term, LS , which compares the predicted 

labels yˆS to the ground truth labels yS. This term 
SUP 

depends on the task the model is being trained for. For 

instance, in semi-supervised node classification tasks (S 

= 

N ), the graph vertices are 

split into labelled and unlabelled nodes (V = VL ∪ VU ), 

and the supervised loss is computed for each labelled 

node in the graph:LN (yN, yˆN; Θ) = 

where l(·) is the loss function used for classification (e.g. 

cross-entropy). Similarly for graph classification tasks (S = 

G), the supervised loss is computed at the graph-level 

and can be summed across multiple training graphs: G G, 

yˆG; Θ) = l(yG , yˆG; Θ). 

Graph regularization loss term, LG,REG, which leverages 

the graph structure to impose regularization constraints 

on the model parameters. This loss term acts as a 

smoothing term and measures the distance between the 

decoded similarity or dissim- ilarity matrix Ŵ ,  and a 

target similarity or dissimilarity matrix s(W ), which 

might capture higher-order proximities than the 

adjacency matrix itself: 

LG,REG(W, Ŵ ; Θ) = d1(s(W ), Ŵ  ) , (1) 

where d1(·, ·) is a distance or dissimilarity function. 

Examples for such regularization are constraining 

neighboring nodes to share similar embeddings, in terms 

of their dis- tance in L2 norm. We will cover more examples 

of regularization functions in Section 4and Section 5. 

Weight regularization loss term, LREG, e.g. for 

representing prior, on trainable model parameters for 

reducing overfitting. The most common regularization is 

L2 regularization (assumes a standard Gaussian prior): 
Σ 

^ 

L = αLSSUP(y , yˆ ; Θ) + βLG,REG(W, W ; Θ) + 

γLREG(Θ), (2) 

where α, β and γ are hyper-parameters, that can be 

tuned or set to zero. Note that 

graphembedding methods can be trained in a supervised 

(α /= 0) or unsupervised (α = 0) fashion. 

 Supervised graph embedding approaches leverage 

an additional source of information to learn embeddings 

such as node or graph labels. On the other hand, 

unsupervised network embedding approaches rely on the 

graph structure only to learn node embeddings. 

A common approach to solve supervised embedding 

problems is to first learn embeddingswith an 

unsupervised method (Section 4) and then train a 

supervised model on the learned embeddings. However, 

as pointed by Weston et al. (2008) and others, using a 

two-step learning algorithm might lead to sub-optimal 

performances for the supervised task, and in general, 

supervised methods (Section 5) outperform two-step 

approaches. 

 

Taxonomy of encoders 

Having introduced all the building blocks of the 

GRAPHEDM framework, we now introduce our graph 

embedding taxonomy. While most methods we describe 

next fall 

We divide graph embedding models into four main 

categories: 

Shallow embedding methods, where the encoder function 

is a simple embedding lookup. That is, the parameters of the 

model ΘE are directly used as node embed- dings: Note that 

shallow embedding methods rely on an embedding lookup 

and are therefore transductive, i.e. they generally cannot be 

directly applied in inductive settings where the graph 

structure is not fixed. 

Graph regularization methods, where the encoder 

network ignores the graph structure and only uses node 

features as input: 

Z = ENC(X; ΘE). 

As its name suggests, graph regularization methods 

leverage the graph structure 

through the graph regularization loss term in Eq. (2) (β 

=/ 0) to regularize node embeddings. 

Graph auto-encoding methods, where the encoder is a 

function of the graph structure only: 

Z = ENC(W ; ΘE). 

Neighborhood aggregation methods, including graph 

convolutional methods, where both the node features and 

the graph structure are used in the encoder network. 

Neighborhood aggregation methods use the graph 

structure to propagate informationacross nodes and learn 

embeddings that encode structural properties about the 

graph: 

 

 

Historical Context 

There is a general two-step process that most machine 

learning models adhere to. Initially, they forego the 
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need of human feature building in favor of 

automatically extracting significant patterns from data. 

According to Bengio et al. (2013), this is the part where 

representation learning takes place. A second step 

involves putting these representations to use in 

supervised (like classification) or unsupervised (like 
clustering, visualization, and nearest-neighbor search) 

applications further down  the  line.  This  task  

is  referred  to  as downstream  processing.3 To 

facilitate the downstream process, a good data 

representation should be both expressive and concise, 

preserving the original data's significant qualities. 

Overfitting and other problems induced by the curse of 

dimensionality may be mitigated, for example, by using 

low-dimensional representations of high-dimensional 

datasets. When it comes to GRL, a graph encoder is 

used for representation learning, while a graph or label 

decoder is employed for jobs further down the line, 

such as node classification and link prediction. Graph 

encoder-decoder networks have traditionally been used 

for manifold learning. It is usual to presume that input 

data, even if it exists on a high- dimensional Euclidean 

space, is inherently contained on a low-dimensional 

manifold. The classic manifold hypothesis describes 

this. This inherently low-dimensional manifold is what 

manifold learning methods aim to retrieve. A discrete 

approximation of the manifold is often constructed 

initially, in the form of a graph with edges connecting 

adjacent points in the ambient Euclidean space.Graph 

distances are a reasonable surrogate for local and global 

manifold distances because manifoldsare locally 

Euclidean. Secondly, while keeping graph distances as 

accurate as feasible, "flatten" this representation of the 

graph by learning a non-linear mapping from graph 

nodes to points in low- dimensional Euclidean space. 

Typically, these representations are more manageable 

compared to theinitial high-dimensional ones, and they 

may subsequently be used in subsequent ISSN2321-2152 

When looking for solutions to the manifold learning 

issue, non-linear4 dimensionality reduction strategies 

were all the rage in the early 2000s. For example, 

spectral approaches are used by Laplacian Eigenmaps 

(LE) (Belkin and Niyogi, 2002) to calculate 

embeddings, and IsoMap (Tenenbaum et al., 2000) to 

maintain global network geodesics by a mix of the 

Floyd-Warshall algorithm and the conventional Multi-

dimensional scaling algorithm. In Section 4.1.1, we 

outline a few of these techniques that

 use shallow encoders. Despite their significant 

influence on machine learning, manifold 

dimensionality reduction approaches are not scalable to 

big datasets. Consider the time complexity of IsoMAP: 

it exceeds quadratic time due to the need to compute all 

pairs of shortest pathways. Since the mappings from 

node to embeddings are non-parametric, they cannot 
generate embeddings for additional datapoints, 

which is a potentially more significant drawback.The 

issue of graph embedding has seen several proposals 

for non- shallow network topologies in recent years. 

Our GRAPHEDM framework may be used to define 

graph neural networks and graph regularization 

networks. When compared to traditional approaches, 

GRL models often provide more expressive, 

scalable, and generalizable embeddings due to their 

use of deep neural networks' expressiveness. 
the next sections, we review recent methods for 

supervised and unsupervised graphembedding techniques 

using GRAPHEDM and summarize the proposed 

taxonomy in Fig. 3. 

 

Unsupervised Graph Embedding 

Using the taxonomy outlined earlier, we will now 

provide a summary of current methods forunsupervised 

graph embedding. Without using task-specific labels 

for the network or its nodes, theseapproaches map the 

graph into a continuous vector space, including its edges 

and/or nodes. By learning to rebuild matrices that 

measure the similarity or dissimilarity between nodes, 

such as the adjacency matrix, some of these approaches 

aim to learn embeddings that maintain the network 

structure. There are methods that use a contrastive 

objective. For example, one could compare nearbynode-

pairs to faraway ones: nodes that are co-visited in short 

random walks should have a higher similarity score 

than distant ones. Another would compare real graphs 

to fake ones: the mutual information between a graph 

and all of its nodes should be higher in real graphs than 

in fake ones. 
 

Shallow embedding methods 

The encoder function in shallow embedding techniques 

is a basic embedding lookup; these methods are 

transductive graph embedding methods. The shallow 

encoder function is simply: for every node vi in V, there 

is a corresponding low-dimensional learnable 

embedding vector Zi in Rd.The data structure in the 

embedding space matches the underlying graph 

structure, thanks to learnt node embeddings. Generally 

speaking, it's not dissimilar to principal component 
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analysis (PCA) and other dimensionality reduction 

techniques; however, the input data may not be linear. 

Specifically, graph embedding issues may be addressed 

usingtechniques for non-linear dimensionality 

reduction, which often begin with constructing a 

discrete graph from the data in order to approximate the 

manifold. We take a look at the distance-based and outer 

product-based approachesto shallow graph embedding. 

 

Distance-based methods By using a preset distance function, these approaches maximize embeddings in a way 

that keeps points that are close together in the graph (as shown by their graph distances, for example) as near 

togetherin the embedding space as feasible. In a formal sense, the decoder network may provide either non- 

Euclidean (Section 4.1.2) or Euclidean (Section 4.1.1) embeddings by computing pairwise distance for a certain 

distance function d2: 

Ŵ  = DEC(Z; ΘD) 

with Ŵ i j  = d2(Zi, Zj) 
 
 
 
 

 

Figure 3: Taxonomy of graph representation learning methods. Based on what informationis 
used in the encoder network, we categorize graph embedding approaches into four cat- 

Auto-encoders 
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egories: shallow embeddings, graph auto-encoders, graph-based regularization and graph 
neural networks. Note that message passing methods can also be viewed as spatial convo- 
lution, since messages are computed over local neighborhood in the graph domain. Recip- 
rocally, spatial convolutions can also be described using message passing frameworks. 

 
 
 

 

Figure 4: Shallow embedding methods. The encoder is a simple embedding look-up 
andthe graph structure is only used in the loss function. 

 
Outer product-based methods These methods on the other hand rely on 
pairwisedot-products to compute node similarities and the decoder network can be 
written as: 

 

Embeddings are then learned by minimizing the graph regularization loss: LG, R E G(W, Ŵ ; 

Θ) = d1(s(W ), Ŵ ) .  Note that for distance-based methods, the function s(·) measures 
dissimilar- ity or distances between nodes (higher values mean less similar pairs of nodes), 
while in outer-product methods, it measures some notion of similarity in the graph (higher 
values mean more similar pairs). 

 

 
4.1.1 
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DISTANCE-BASED:  EUCLIDEAN  METHODS 
 

In order to optimise Euclidean embeddings, most 

distance-based methods aim to minimise the 

Euclidean distance between similar nodes. 

Nonlinear methods such as Laplacian eigenmaps, 

IsoMAP, and local linear embedding are available, 

in addition to linear embedding techniques that 

generate linear projection subspaces in low 

dimensions, such as principal component analysis 

(PCA) and maximum degree of separation (MDS). 

Although these methods were first introduced for 
dimensionality reduction or visualisation, they may 

be easily used for graph embedding as well. 

 
Multi-Dimensional Scaling 

The majority of distance-based approaches to 
optimising Euclidean embeddings seek to reduce 

the Euclidean distance between nodes that are 

comparable. Laplacian eigenmaps, IsoMAP, and 

local linear embedding are nonlinear approaches; 

principal component analysis (PCA) and 

maximum degree of separation (MDS) are linear 

embedding techniques that produce low-

dimensional linear projection subspaces. These 

techniques may be readily used to graph 

embedding as well, despite their initial 

introduction for dimensionality reduction or 

visualisation. 

 

ij = d2(Zi, Zj) = ||Zi − Zj||2. 

ij s(W )2 
To rephrase, mMDS finds an embedding 

configuration that maintains distances in the low-

dimensional embedding space using the stress cost 

function, which is a residual sum of squares. The 

mMDS and PCA 

dimensionality reduction methods are identical 
when a higher-dimensional representation's 

Euclidean distances are used to compute the 

dissimilarities. Finally, there are variants of this 

method. A low-rank decomposition of the 

gramme matrix allows for closed-form execution 

of classical MDS (cMDS), and non- 

 

 
15.1.1 NODE  CLASSIFICATION 

 

16. 16. Node classification, 

which seeks to create node 

representations that can 

accurately anticipate their 

labels, is a crucial 

supervised graph 

application. One possible 

use for node labels in 

citation networks is to 

denote scientific topics; in 

social networks, they may 

denote gender or other 

attributes. Since labelling 

massive graphs requires a 

significant time and 

financial investment, 

semi-supervised node 

classification is a common 

use case. In semi-

supervised settings, the 

goal is to forecast 

unlabeled node properties 

using node links, with just 

a small fraction of nodes 

being labelled. It is 

deemed transductive since 

there is only one partially 

labelled fixed graph in this 

setting. Alternatively, you 

may use inductive node 

classification, which 

involves figuring out how 

to classify nodes in various 

networks. A node's 

performance on 

categorised nodes tasks 

may be substantially 

enhanced if its features 

accurately describe the 

objective label. Modern 

methods like GCN (Kipf 

and Welling, 2016a) and 

GraphSAGE (Hamilton et 

al., 2017a) have achieved 

state- of-the-art 

performance on multiple 

node classification 

benchmarks by combining 
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structural data with 

semantic information 

obtained from features. On 

the other hand, methods 

like random walks on 

graphs fail miserably at 
these tasks because they 

don't employ feature 

information. 

 
21.1.1 GRAPH CLASSIFICATION 

17. Graph classification is an example of a 

supervised application; it takes an input graph and 

aims to predict labels at the graph level. Graph 

classification issues are essentially inductive since 

new graphs are introduced throughout testing. As 

for other popular options, there are biochemical 

pursuits and online social networks. Molecular 

graphs have widespread use in biology. Nodes in 

these graphs may be feature vectors that encode 

the number of atoms in a 1-hot fashion, and edges 

between nodes can represent bonds, with the 

feature vector indicating the kind of bond. 

(Debnath et al., 1991) MUTANG is a task-

dependent graph-level label that shows if a drug is 

mutagenic to bacteria. Online social networks 

often use the node metaphor, with connections and 

interactions depicted by the edge metaphor. Graph 

categorization tasks on Reddit, for instance, 

include a large number of graphs (Yanardag and 

Vishwanathan, 2015). When one person responds 

to another's comment, for example, an edge will 

connect the two nodes in the discussion thread 

graph. Finding the community (sub-reddit) where 

a discussion took place is the goal, given a 

comment graph. 

Graph classification tasks need a new sort of 

pooling to aggregate data at the node and graph 

levels, in contrast to edge prediction and node 

classification, which both use pooling at the edge 

level. Extending the idea of pooling to any kind of 

graph is a difficult and continuing area of research, 

as mentioned before. We want the pooling 

mechanism to be unaffected by node order. Some 

methods use simple pooling, such as adding up all 

the latent vectors at the network node level or 

taking the mean of them (Xu et al., 2018). 

Approaches that use differentiable pooling include 

Ying et al., 2018b; Cangea et al., 2018; Gao and Ji, 

2019; and Lee et al., 2019. To name a few. 

Supervisorial techniques for learning graph-level 

representations are provided by Tsitsulin et al. 

(2019), Al-Rfou et al. (2019), and Tsitsulin et al. 

(2020a), but other unsupervised methods are also 

available. analysed as graph kernels (GKs) by 
Viswanathan et al. (2010) and Kriege et al. (2020).  

Although GKs are not our primary concern, we do 

touch on their links to GRAPHEDM here. Graph-

level tasks, 

such graph categorization, are suitable for GKs. 

In order to convert any two graphs into a scalar, 

GK may automatically apply a similarity 

function. Counting the number of walks (or 

pathways) that two graphs have in common is 

one way that traditional GKs calculate graph 

similarity. For example, each walk may be 

stored as a seriesof node labels. Common practice 

dictates using node degrees as labels in the 

absence of explicit labels. The 

capacityof GKs to identify (sub-)graph 

isomorphism is a common metric for analysis. 

When ordering of nodes is ignored, two (sub-

)graphs are considered isomorphic if they are 

identical. According to the 1-dimensional 

Weisfeiler-Leman(1-WL) heuristic, two sub-

graphs are considered isomorphic since sub-

graph isomorphism is NP-hard. In each graph, 

histograms are used to tally the statistics of the 

nodes (e.g., how many nodes with the label "A" 

have an edge to nodes with the label "B"). If two 

graphs' histograms, obtained from the same 1-

hop neighborhood, are equal, thenthe graphs are 

considered isomorphic according to the 1-WL 

heuristic. An example of a GNN that has been 

shownto achieve the 1-WL heuristic is the Graph 

Isomorphism Network (GIN; Xu et al., 2018). 

This means that GIN canonly map two graphs to 

the same latent vector if they are considered 

isomorphic according to the 1-WL heuristic. In 

some newer studies, GKs and GNNs are used 

together. Using the similarity of the "tangent 

space" of the goal with respect to the Gaussian-

initialized GNN parameters, Du et al. (2019) 

models the similarity of two graphs, andChen et 

al. (2020) extracts walk patterns. There isn't any 

GNN training in either (Du et al., 2019; Chen et 

al., 2020).Instead, kernel support vector 

machines and other kernelized algorithms are 
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used to the pairwise Gram matrix during 

training. Therefore, our GCF and GRAPHEDM 

frameworks are not well-suited to include these 

methodologies. However, there are other 

approaches that don't rely on indirectly 

computing graph-to-graph similarity scalar 
scoresbut instead directly map graphs to high-

dimensional latent spaces. One example is 

Morris et al.'s (2019) k-GNN network, which is 

deliberately coded as a GNN but can actually 

implement the k-WL heuristic (which is 

identical to 1-WL but where histograms are 

produced up-to k-hop neighbors). Therefore, our 

GCF and GRAPHEDM frameworks can define 

the k-GNN model classes. 

 
Conclusion and Open Research Directions 
In this review, we laid forth a common procedure 

for evaluating ML models that have been trained 

on graph- structured data. Our enhanced 

GRAPHEDM system, which was previously used 

for unsupervised network embedding, now 

incorporates deep graph embedding methods, 

graph auto-encoders, graph regularisation 

approaches, and graph neural networks. 

Furthermore, we introduced a graph convolution 

framework (GCF) that allows us to characterise 

and compare convolution-based graph neural 

networks, including spectral and spatial graph 

convolutions. Our comprehensive taxonomy of 

GRL approaches, presented using this paradigm, 

included over 30 supervised and unsupervised 

strategies for graph embedding.If this survey is 

successful in its aims, it will hopefully motivate 

researchers to dig further into GRL, which should 

eventually provide answers to the issues these 

models are facing. As far as taxonomy is 

concerned, there are 19. Here, we laid the 

groundwork for a uniform method of comparing 

ML models that have been trained on graph-

structured data. Now including deep graph 

embedding techniques, graph auto-encoders, 

graph regularisation approaches, and graph neural 

networks, our improved GRAPHEDM system 

may be utilised for supervised network embedding 

as well as unsupervised. We also presented a graph 

convolution framework (GCF) for comparing and 

characterising graph neural networks that use 

convolution, as well as spectral and spatial graph 

convolutions. More than 30 supervised and 

unsupervised solutions for graph embedding were 

included in our exhaustive taxonomy of GRL 

approaches, which was presented using this 

paradigm.With any luck, the results of this poll 

will encourage further investigation into 
method for every specific situation. Additionally, 

it is worth noting that scholars who have only The 
taxonomy may help researchers identify 
appropriate methodologies for data analysis, 
organise their questions, find relevant literature, 
and set trustworthy baselines for comparison. For 
all the success that GRL methods have had with 
node categorization and connection prediction, 

there remain a number of problems that need 
fixing. The next section covers the research 
opportunities and challenges associated with graph 
embedding models. 

 

 
Evaluation and benchmarks 

The methods discussed in this study are often 
evaluated using industry-standard standards for 

node categorization or link prediction. It is 

common practice to compare graph embedding 

methods to citation networks in order to 

demonstrate the argument. A concern with these 

small citation standards, as shown in recent study 

(Shchur et al., 2018), is that the results could vary 

substantially based on the datasets' splits or 

training procedures (such early stopping). In order 

to enhance GRL techniques, it is essential to use 

robust and consistent evaluation procedures and to 

broaden the area of assessment beyond standards 

for link prediction and small node classification. 

Examples of recent advancement in this method 

include graph embedding libraries (Fey and 

Lenssen, 2019; Wang et al., 2019; Goyal and 

Ferrara, 2018a), new graph benchmarks with 

leaderboards (Hu et al., 2020; Dwivedi et al., 

2020), and other similar works. Similarly, Sinha et 

al. (2020) proposed a set of first-order logic tasks 

to evaluate GNNs' reasoning abilities. 

 

Fairness in Graph Learning A new field known as 

Fairness in Machine Learning is emerging to 

address the issue of models associating'sensitive' 

attributes with the model's anticipated outcome 
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(Mehrabi et al., 2019). For problems with graph 

learning, these factors may be especially important 

because of the correlation between the output and 

the graph's structure (the edges) and the nodes' 

feature vectors. According to Bose Hamilton 

(2019), the most common way to include fairness 
constraints into models is via adversarial learning. 

To make sure the model doesn't have any bias 

when it comes to the sensitive feature(s), you may 

use this strategy to GRL. However, just how much 

prejudice can be eradicated by adversarial methods 

is an uncertain matter. Even with a combination of 

debiasing techniques, the task at hand could be 

challenging to complete (Gonen and Goldberg, 

2019). Recent research in the area has 

concentrated on proving assurances for debiasing 

GRL (Palowitch and Perozzi, 2019). 

 

Application to large and realistic graphs When 

dealing with datasets that include tens of thousands 

to hundreds of thousands of nodes, graph learning 

approaches are usually reserved. But there are real-

world graphs that are far larger, with billions of 

nodes. Scalable solutions for large graphs need a 

Distributed Systems setup with several processors, 

such as MapReduce (Dean and Ghemawat, 2008; 

Lerner et al., 2019; Ying et al., 2018a). Is it possible 

for a researcher to use a home computer to 

implement a learning strategy on a massive graph 

that exceeds the capacity of random access 

memory (RAM) but still fits on a single hard drive 

(e.g., with a one terabyte size)? Compare it to other 

approaches that have been proposed to solve a 

computer vision problem utilising a big dataset 

(Deng et al., 2009; Kuznetsova et al., 2020). You 

may use RAM for whatever model you like. 

learned on desktop PCs, no matter how big the 
dataset is. Some graph embedding models may 

have a hard time fixing this problem, especially if 

their parameters increase in size along with the 

graph's nodes.At times, it could be tough for 

businesspeople to choose the proper graph to use 

as input. In their description of the Google system 

Grale, Halcrow et al. (2020) demonstrate how it 

learns the correct graph from several attributes. 

When learning graphs from large datasets, Grale 

use similarity search techniques, including locality 

sensitive hashing. In order to facilitate end-to-end 

learning, Rozemberczki et al. (2021) upgraded the 

Grale model by include an attention 

 

 
We expect new mathematical and practical 

challenges to arise from learning algorithms for 

large networks that can be executed on a single 

machine. We hope that academics will give this 

field the attention it deserves so that neurology 

researchers and other non-specialist practitioners 

may utilise these learning techniques to assess the 

sub-graph of the human brain, which is made up 

of neurons and synapses. 

Molecule generation Molecular biologists may be 

able to save time and money by learning on 

graphs, which might revolutionise their work. 

Several approaches have been suggested by 

researchers to forecast the quantum characteristics 

of molecules (Gilmer et al., 2017; Duvenaud et al., 

2015) and to create molecules with certain desired 

features (Liu et al., 2018; De Cao and Kipf, 2018; 

Li et al., 2018; Simonovsky and Komodakis, 2018; 

You et al., 2018). In (Elton et al., 2019), a survey 

of current approaches is provided. Jin et al. (2018), 

Ragoza et al. (2017), and Feng et al. (2018) are 

only a few examples of the approaches that are 

involved in drug design, while others are focused 

with producing materials with certain qualities, 

such as conductivity and malleability. 

Combinatorial optimization 

Computationally difficult problems arise in many 
areas, including routing science, cryptography, 

decision- making, and planning, among many 

others. The methods used to determine the optimal 

solution to computationally challenging issues are 

not very scalable. For a rundown of the methods 

that have lately garnered interest in handling 

combinatorial optimisation problems using 

machine learning techniques, such  

or NP-hard problems, graph embeddings have 
recently attracted attention (Khalil et al., 2017; 

Nowak et al., 2017; Selsam et al., 2018; Prates et 

al., 2019). In reality, many problems may be 

represented in terms of graphs; graphs provide a 

suitable representation for many challenging 

difficulties, including SAT and vertex cover. 
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Computingly challenging problems may be solved 

using data-driven approaches, such as finding out 

whether a particular instance (e.g., node) is a 

portion of the optimal solution out of several 

instances of the problem. Seek for tasks in prior 

research on optimising graph partitions that aim to 
achieve a goal (e.g., the smallest conductance cut) 

(Bianchi et al., 2020; Tsitsulin et al., 2020b). 

Because GNNs are better at depicting graphs than 

normal neural networks (e.g., permutation 

invariance), these approaches all begin with 

GNNs. This is because GNNs have relational 

inductive biases. Here are several solutions that still 

beat Whilst these methods rely on data, GNNs have 

shown potential when used to more complex 

problems (Nowak et al., 2017; Prates et al., 2019). 

Lamb et al. (2020) offers a thorough synopsis of 

GNN-based combinatorial optimisation methods 

in their most recent research on neural symbolic 

learning. 

Non-Euclidean embeddings The underlying space 

geometry is an important part of graph 

embeddings, as we saw in Sections 4.1.2 and 

5.6. All graphs are discrete complex, non-
Euclidean structures with high dimensions; however, 
there is currently no simple method for encoding such 
data into embeddings with low dimensions that 
maintainthe graph topology (Bronstein et al., 2017). 
Hyperbolic and mixed-product space embeddings are 
two examples of non-Euclidean embeddings that have 
recently attracted attention and made strides in the 
field of learning (Gu et al., 2018; Nickel and Kiela, 
2017).In comparison to their Euclidean counterparts, 
these non-Euclidean embeddings have the potential 
for embeddings that are more expressive. For 
example, compared to Euclidean embeddings, 
hyperbolic embeddings exhibit significantly less 
distortion when representinghierarchical data (Sarkar, 
2011). This has led to state-of- the-art outcomes in 
numerous contemporary applications, including 
linguistics tasks (Tifrea et al., 2018; Le et al., 2019) 

appropriate shape for an input graph. Anintriguing 

area for future research is the process of selecting 

or learning the appropriate geometry for a specific 

discrete graph, even though there are already 

discrete measures forthe graphs' tree-likeliness, 

such as Gromov's four-point condition 

(Jonckheere et al., 2008;Abu-Ata  and  Dragan,  

2016;  Chen  et  al.,  2013;  Adcock  et 

al., 2013).Assurances based on theory Recent 
developments in graph embedding model design 
haveoutperformed state-of-the-art methods in 
several domains. Nevertheless, our knowledge ofthe 
theoretical promises and constraints of graph 
embedding models is currently restricted.Xu et al. 
(2018), Verma and Zhang (2019), Morris et al. (2019), 
and Garg et al. (2020) allapply current findings from 
learning theory to the issue of GRL, which is a new field 
of study on GNN representational power. If we want to 
know what the theoretical benefits and drawbacks of 
graph embedding techniques are, we need to build 
theoretical frameworks. 
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