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Abstract: 

In OFDM-MIMO (Orthogonal Frequency Division Multiplexing - Multiple Input Multiple Output) systems, 

channel estimation can be made quickly and precisely with the help of adaptive filters and compressive sensing. By 

combining adaptive filtering with compressive sensing, the channel estimation in OFDM-MIMO systems can take 

advantage of the lower pilot overhead provided by compressive sensing without sacrificing accuracy or flexibility. To 

decrease the difference between the actual signal and the expected one, adaptive filters can iteratively change the tap 

weights or filter coefficients. The benefits of sparse signal recovery algorithms and adaptive filtering algorithms can 

be maximised by combining methods like MMSE and LMS tools with methods like Subspace Pursuit, OMP, and 

CoSaMP. The simulation results compare the methods we're using in terms of SNR, NMSE, and BER. 

 

Index Terms: Subspace Pursuit, OMP, and CoSaMP, Adaptive Filters, Interference cancellation, Channel impulse 

response 

 

Introduction 

Transmission and reception of signals between mobile 

devices and base stations are impossible without 

antennas. Let's talk about antennas and how they 

impact mobile communication. Antennas are essential 

for both sending and receiving radio signals between a 

mobile device and a base station [1]. They do the 

reverse, turning electromagnetic waves into electrical 

impulses for transmission. The signal strength, range, 

data rates, and total system capacity are only few of 

the aspects of wireless communication that antenna 

performance directly affects. Directional antennas 

focus the power of a signal in one direction, allowing 

for stronger reception and greater range. Both base 

stations and mobile devices can benefit from their use 

of these technologies to improve coverage and connect 

with specific base stations. Among the many types of 

directional antennas are the sector, panel, and 

parabolic designs. By reducing the impact of fading, 

interference, and multipath propagation, diversity 

antennas improve the dependability of wireless  
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communication. Multiple, physically isolated antennas 

improve the system's reception diversity [2]. Space 

diversity (using multiple antennas in separate 

locations) and polarisation diversity (using multiple 

antennas with opposite polarisations) are two common 

diversity methods. Multiple-Input In order to boost 

data throughput, increase spectral efficiency, and 

improve signal quality, several-Input Multiple-Output 

(MIMO) technology employs several antennas at both 

the transmitter and receiver [3]. To boost 

communication efficiency, MIMO antennas use the 

spatial dimension to send and receive multiple streams 

of data simultaneously. The latest generation of mobile 

networks, known as 4G and 5G, rely heavily on 

MIMO. 

Numerous-Input Multiple-Output Orthogonal 

Frequency Division Multiplexing (MIMO OFDM) is a 

transmission method that uses orthogonal frequency 

division multiplexing (OFDM) modulation in 

conjunction with numerous antennas on both the 

transmitter and receiver ends. Using more than one 

antenna at either the sender's or receiver's end of a 

communication system is what's meant by "MIMO." 

MIMO can boost the performance of wireless 

communication systems in terms of data throughput, 

dependability [4]-[5], and spectrum efficiency by 

employing spatial diversity and multiplexing 

techniques. By sending and receiving several spatial 

streams concurrently, MIMO can handle more data. 

Modulation schemes like orthogonal frequency 

division multiplexing (OFDM) split the frequency 

spectrum into a number of narrowband subcarriers. 

After being modulated with data, the resulting 

subcarriers are orthogonal to one another and so free 

of mutual interference. OFDM allows for effective 

utilization of the available bandwidth and is resilient 

against frequency-selective fading [6]. With MIMO 

OFDM, high data rates, expanded capacity, and 

improved dependability in wireless communication 

systems are all possible thanks to the combination of 

the two technologies. Multiple-input multiple-output 

(MIMO) OFDM uses multiple antennas at the receiver 

to separate and decode the transmitted signals, one for 

each transmitting antenna. Signal quality, channel 

capacity, and resilience to fading and interference are 

all boosted thanks to the spatial separation of signals. 

MIMO OFDM's advantages include, It Boosted the 

Flow of Information: By sending numerous data 

streams over separate spatial channels at once, MIMO 

OFDM is able to increase throughput. Furthermore, 

the use of multiple antennas provides diversity, which 

lessens the effect of fading and boosts the wireless 

link's stability. MIMO OFDM improves the system's 

capacity and spectral efficiency by making use of 

several spatial channels and efficiently assigning 

subcarriers. Resistance to Influence from Multiple 

Paths: The combination of MIMO's spatial diversity 

and OFDM's inbuilt robustness against multipath 

fading makes MIMO OFDM an excellent choice for 

communication under harsh conditions [7]. Multi-

input, multi-output (MIMO) orthogonal frequency 

division multiplexing is used in many of today's 

wireless networks, such as 4G LTE, Wi-Fi 

(802.11n/ac/ax), and 5G NR (New Radio). It plays a 

crucial role in expanding the capacity, range, and 

quality of service of these networks. 

Estimating the channel response between many 

antennas at the transmitter and receiver is essential for 

MIMO OFDM (many-Input Multiple-Output 

Orthogonal Frequency Division Multiplexing) systems 

to effectively recover sent data [8]-[9]. When the 

channel in a communication system is sparse, with just 

a small number of non-zero elements in the channel 

response and the rest being near to zero, sparse 

channel estimation is used to estimate the channel 

response. Recovery of the non-zero components of the 

channel response is the focus of sparse channel 

estimation. Reduced pilot overhead, greater spectrum 

efficiency, and enhanced estimation accuracy are just a 

few of the benefits of sparse channel estimation in 

communication systems. It is especially useful in low-

resource settings, such as narrowband or large MIMO 

systems, where conventional channel estimating 

methods may not be feasible or efficient [10]. It is 

worth noting, however, that the efficacy of sparse 

channel estimates is very context-dependent, 

depending on things like the channel's sparsity level, 

the coherence features of the channel response, the 

particular sparse recovery technique employed, and the 

availability of pilot resources. To achieve accurate and 

reliable channel estimate, the characteristics of the 

wireless channel and the needs of the system must be 

carefully considered and optimized. Utilising the 

channel's sparsity to cut down on pilot overhead and 

boost spectral efficiency is the goal of sparse channel 

estimation in OFDM MIMO systems [11]-[12]. It 
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permits precise channel estimation even when there 

are just a few number of important propagation routes 

in the channel response. Compared to conventional 

dense channel estimation methods, the performance of 

the estimate process is much improved by taking use 

of sparsity. In order to acquire and reconstruct sparse 

or compressible signals with less data, a sophisticated 

signal processing approach known as "compressive 

sensing" has been developed. Several algorithms for 

compressive sensing have been created in this work 

[13]-[14], each with its own set of benefits and 

potential uses. The accuracy, complexity, and rate of 

convergence are each compromised in a different way 

by the OMP, CoSaMP, and Subspace Pursuit 

algorithms. Considerations like as sparsity, noise, 

processing resources, and application needs inform the 

algorithm selection process. Selecting an algorithm 

depending on its performance in a given context or 

using a hybrid strategy that incorporates numerous 

algorithms to optimize compressive sensing 

performance are both frequent practices. 

 

Existing Work 

The parameters or coefficients of adaptive filters in 

signal processing applications are dynamically 

modified in response to the data they are given. These 

filters may learn from their input signals and the state 

of the system to better perform signal processing tasks 

over time. This allows them to more accurately follow 

time-varying characteristics while also decreasing 

interference. When the actual output differs from the 

anticipated output, adaptive filters use adaptive 

algorithms to adjust the filter coefficients accordingly. 

The needs of the application and the optimal 

performance parameters will determine the best 

adaptive algorithm to use. The Least Mean Squares 

(LMS) algorithm, the Recursive Least Squares (RLS) 

algorithm, and the Normalised Least Mean Squares 

(NLMS) algorithm are examples of popular adaptive 

algorithms. 

System identification, noise cancellation, equalisation, 

and adaptive beamforming are just some of the many 

signal processing applications that make use of LMS 

(Least Mean Squares), an adaptive filter method. The 

instantaneous discrepancy between the desired and 

expected outputs is used to fine-tune the filter 

coefficients in a recursive fashion. Estimate the 

resultant signal, y(n), by applying the filter to the 

input. 

y(n) = Σw(k)x(n-k) = wT * x(n)                                (1) 

To determine the error signal e(n), subtract the 

expected from the intended result. 

 e(n) = d(n) - y(n)                                                      (2) 

Modify the filter parameters in accordance with the 

LMS rule 

 w(k) = w(k) + μ * e(n) * x(n-k), for k = 0 to M       (3) 

Iterate over all samples until convergence or an end 

point is reached. 

The LMS method uses few computations and is easy 

to implement. In contrast to other adaptive filter 

methods like the Recursive Least Squares (RLS) 

algorithm, it may be susceptible to noise and have a 

slower rate of convergence. Although LMS has certain 

drawbacks, it is nonetheless commonly employed 

because of its simplicity and usefulness in many 

adaptive filtering applications. 

Signal processing and communication systems 

frequently employ MMSE (Minimum Mean Square 

Error) as an estimation method. Incorporating 

statistical aspects of the signals and noise, it seeks to 

minimise the predicted value of the mean square error 

between the genuine signal and the estimated signal. 

The minimum mean squared error (MMSE) estimator 

yields a minimum mean squared error solution. 

By processing the input signal x(n) with the filter, we 

can estimate the output signal y(n). 

y(n) = Σw(k)x(n-k) = wT * x(n) 

Finding the filter coefficients w_opt that minimise the 

expected mean square error (MMSE) between the 

desired output d(n) and the estimated output y(n) is the 

goal of MMSE estimation. The formula for the MMSE 

is as follows: 

E = E[|d(n) - y(n)|^2]                                                 (4) 

The expectancy operator is denoted by E[]. 

By taking the derivative of the predicted mean square 

error E as a function of the filter coefficients w and 

setting it to zero, the optimal filter coefficients may be 

determined. 
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∂E/∂w = 0                                                                 (5) 

By solving this equation(5), we may obtain the w_opt 

filter coefficients that result in the smallest mean 

squared error. Due to the statistical nature of the 

signals and noise, an analytical solution to this 

equation may be difficult or impossible to achieve in 

practise. To obtain the best filter coefficients 

numerically, iterative optimisation techniques like the 

steepest descent method or the Newton-Raphson 

approach may be utilised. The statistical properties of 

the noise corrupting the received signal are represented 

by the noise covariance matrix R_n. In most cases, this 

information is believed to be known or can be inferred 

based on existing knowledge or training data. When 

considering the statistical characteristics of the signals 

and noise, the MMSE estimator delivers an ideal 

answer in terms of the mean square error. It is more 

accurate than some alternative estimating methods and 

is resistant to background noise. However, it might be 

better appropriate for circumstances with known 

statistical features because it may require knowledge 

of the signal and noise statistics. 

In the context of signal estimation and filtering, the 

least squares filter is a common technique. By 

modifying the filter coefficients, it reduces the MSE 

between the target and estimated outputs. 

 y(n) = Σw(k)x(n-k) = wT * x(n) 

The objective is to find the value of n such that the 

average squared difference between d(n) and y(n) is as 

little as possible across all n-samples. 

E = Σ[d(n) - y(n)]^2 

The ideal filter coefficients w are found using the least 

squares filter, which minimises the mean square error. 

This can be written as a mathematical expression: 

w_opt = argmin(E) = argmin[Σ[d(n) - y(n)]^2]         (6) 

By differentiating E with respect to w and fixing the 

derivative to zero, we may find the ideal filter 

coefficients: 

∂E/∂w = 0 

In some cases, the problem's complexity or the 

system's non-linearity may make an analytical solution 

to this equation impractical. When this is the case, 

numerical methods for finding the ideal filter 

coefficients can be used; examples include the gradient 

descent approach and the Newton-Raphson method. 

When attempting to minimise the difference between 

the desired signal and the estimated signal, the least 

squares filter is frequently employed. This includes 

system identification, adaptive filtering, and channel 

estimation. It offers a method for minimising the 

impacts of noise and interference on signal estimation 

that is both computationally efficient and robust. 

In conclusion, the sparsity property of the signal can 

be exploited by the SP, OMP, and CoSaMP algorithms, 

which are all tailored to sparse signal recovery. Signal 

estimation is improved by the use of more general-

purpose adaptive filters like LMS and RLS, which are 

better able to adapt to changing conditions and 

optimise estimate or filtering performance. 

Proposed Work 

The sparsity of a channel, as it pertains to wireless 

communication systems, is the phenomena in which 

just a small fraction of propagation channels 

significantly affect the total channel response, while 

the remaining paths have only a small effect. The 

geometry of the surrounding space, the existence of 

barriers, and the scattering properties of the wireless 

medium all contribute to the sparsity of a channel. A 

sparse channel is one for which only a small subset of 

coefficients (or taps) are significantly different from 

zero, while the rest coefficients are very close to zero. 

The important propagation pathways or multipath 

component clusters that carry the bulk of the channel 

response energy have non-zero coefficients. Channel 

sparsity has significant consequences for channel 

estimation, equalisation, beamforming, and resource 

allocation in wireless communication systems. System 

performance, complexity, and spectrum efficiency can 

all be enhanced by taking use of the channel's sparsity. 

Compressive sensing methods can be used to 

effectively estimate the channel response with fewer 

measurements in the setting of channel estimation. The 

non-zero components can be recovered precisely using 

these techniques because they take use of the channel's 

sparsity or compressibility. When it comes to sparse 

channel estimation, the Basis Pursuit algorithm is well 

regarded. By minimising the L1 norm of the channel 

response under the stipulation that the measurements 

agree with the acquired data, this method finds a 

solution to an optimisation problem. Under the right 

circumstances, Basis Pursuit's convex optimisation 

formulation allows for precise sparse channel 
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recovery. When it comes to sparse channel estimation, 

the Orthogonal Matching Pursuit algorithm is a greedy 

choice. The estimated channel response is then revised 

depending on the selected channel taps from a 

dictionary that best match the measurements. When 

the sparsity level is known, OMP is computationally 

efficient and recovers sparse channels accurately. 

Another greedy technique employed in sparse channel 

estimation is Compressed Sensing Matching Pursuit. 

Recovering sparse channels from compressed data is 

made easier and more precise with the help of 

Orthogonal Matching Pursuit and CoSaMP. The 

channel response is estimated iteratively using 

CoSaMP, with taps chosen based on their ability to 

best match the observations and the estimate refined 

depending on residual error. 

Sparse signal recovery and estimation are two of the 

many uses for the SP (Subspace Pursuit) technique in 

compressive sensing. The subspace pursuit flow chart 

is shown in Fig.1 

 

Fig 1. Subspace Pursuit Flow 

It incorporates features from both OMP and subspace 

pursuit, allowing for the precise recovery of sparse 

signals with fewer input data points. Calculation as 

shown below 

z = A^T * r_{k-1}                                                      (7) 

Find the K greatest magnitude elements in z and their 

corresponding indices using the correlation vector you 

just calculated.  

I_k = argmax(|z|, K)                                                   (8) 

Least-squares-estimation-based update of the estimate 

vector x_k:  

x_k(I_k) = argmin_x ||y - A_{I_k} * x||_2 Update the 

residual, Calculate the residual vector r_k:  

r_k = y - A * x_k                                                       (9) 

In compressive sensing applications, the OMP 

(Orthogonal Matching Pursuit) technique is frequently 

used for sparse signal recovery and estimation. As 

measurements are made, the most associated atoms 

from a dictionary are picked and used to revise the 

predicted sparse signal. As depicted in Fig. 2 

represents the OMP workflow chart. 

 

Fig 2. OMP Flow 

Calculate the correlation vector equation(7): 

 z = A^T * r_{k-1} 

Find the biggest magnitude element in z, then assign it 

the index i_k: I_k = max(argint(|z))                              

(10) 

Add i_k to the index set I_k: I_k = I_{k-1} ∪ {i_k} 

Refresh the least-squares-estimated vector x_k:  

x_k(I_k) = argmin_x ||y - A_{I_k} * x||_2               

(11) 

Calculate the residual vector r_k equation(9):  

r_k = y - A * x_k 

In compressive sensing applications, the CoSaMP 

(Compressed Sensing Matching Pursuit) method is 

frequently employed for sparse signal recovery. It is an 
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improvement upon the Matching Pursuit algorithm 

that incorporates ideas from both OMP and CoSaMP 

to enable the rapid and precise recovery of sparse 

signals from fewer data points. 

Determine the vector of correlation by equation(7): 

z = A^T * r_{k-1} 

Find the 2K elements with the biggest z-values:  

I_k = argmax(|z|, 2K)                                                

(12) 

Update the estimate vector x_k using least squares 

estimation:  

x_k(I_k) = argmin_x ||y - A_{I_k} * x||_2 

Threshold the estimate vector by keeping only the K 

largest magnitude elements:  

x_k = topK(x_k, K)                                                    

(13) 

 

Fig 3. CoSaMP  Flow 

 

Fig.(3) represents CoSaMP  working flow model. For 

compressive sensing applications requiring sparse 

signal recovery, two techniques stand out: Subspace 

Pursuit (SP) and Compressed Sensing Matching 

Pursuit (CoSaMP). The accuracy of sparse signal 

recovery can be enhanced by combining these methods 

with various estimate approaches like Least Squares 

(LS) and MMSE (Minimum Mean Square Error). In 

order to accurately recover sparse signals from a 

smaller number of measurements, SP is a technique 

that combines aspects of Orthogonal Matching Pursuit 

(OMP) and subspace pursuit. SP and LS estimation 

can be used together to revise Stage 2's predicted 

sparse signal coefficients. Minimising the least squares 

error between the measured and estimated signal is the 

goal of the LS estimation step, which provides a 

computationally simple and effective answer. 

In SP, the least squares estimation requires resolving 

the following problem: 

x_k = argmin_x ||y - A_I_k * x||_2                         (14) 

x_k is a new estimate of the sparse signal coefficients, 

where y is the measurement vector and A_I_k is the 

submatrix of A corresponding to the chosen indices 

I_k. 

It is possible to use SP in conjunction with MMSE 

estimation to revise the Stage 2 predicted sparse signal 

coefficients. In order to minimise the mean square 

error between the measurements and the estimated 

signal, MMSE estimation takes into account the 

statistical features of the signal and noise. When the 

statistical properties of the signals and noise are 

considered, the minimum mean squared error (MMSE) 

estimation method yields the best possible mean 

squared error solution. 

Under the sparsity constraint, the MMSE estimation in 

SP entails finding the optimal solution to an 

optimisation problem that minimises the predicted 

mean square error between the measurements and the 

estimated signal. The MMSE estimation can be 

formulated in several ways depending on the signal 

and noise statistics and the intended use. 

The sparse signal recovery algorithm CoSaMP is a 

greedy one. In order to efficiently and accurately 

recover sparse signals from fewer data, it combines 

aspects of OMP and CoSaMP. CoSaMP and LS 

estimation can be used together to revise Stage 2's 

calculated sparse signal coefficients. The goal of the 

LS estimation phase is to obtain the signal estimate 

with the least squares error from the measurements. 

The least squares problem that must be solved for the 

LS estimation in CoSaMP is as follows: 

x_k = argmin_x ||y - A_I_k * x||_2 
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In a fashion analogous to SP, y represents the 

experimental data, A_I_k is the portion of A associated 

with the chosen indices I_k, and x_k is the latest 

estimate of the sparse signal coefficients. 

CoSaMP and MMSE estimates can be used together to 

revise Stage 2's predicted sparse signal coefficients. In 

order to minimise the mean square error between the 

measurements and the estimated signal, MMSE 

estimation takes into account the statistical features of 

the signal and noise. In CoSaMP, the MMSE 

estimation is performed by minimising the expected 

mean square error (EMSE) between the measured 

signal and the estimated signal, while adhering to the 

sparsity constraint. The MMSE estimation can be 

formulated in several ways depending on the signal 

and noise statistics and the intended use. 

Table.1 shows the parameters involved for simulation. 

 

Results & Discussions 

 

Fig4. Performance analysis of LS, MMSE, LMS 

channel estimation on OFDM 

 

Fig 5. Performance analysis for channel estimation LS 

MMSE COSAMP SP-MMSE OMP -MMSE 

 

Fig 6. Performance analysis for channel estimation in 

MIMO-OFDM system using SP-LS SP-MMSE 

 

Fig 7. Performance analysis for channel estimation in 

MIMO-OFDM system using CoSaMP-LS CoSaMP-

MMSE   
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Fig 8. Performance analysis for channel estimation in 

MIMO-OFDM system using LMS 

The MSE is a statistical measure of how far off the 

estimated channel is from the actual channel. A smaller 

MSE suggests more precise estimation. The signal-to-

noise ratio (SNR) provides a numerical representation 

of this relationship. In most cases, higher SNR results 

in more accurate estimates. It should be kept in mind 

that the effectiveness of various estimation methods is 

highly context- and implementation-dependent.  

In general, the MSE decreases as the SNR rises, 

indicating that the estimation is becoming more 

precise. Lower signal-to-noise ratios (SNRs) mean 

more noise is present, which in turn causes greater 

MSE and less precise estimations. In order to do 

precise channel estimates in OFDM systems, a high 

signal-to-noise ratio is required. 

In Fig(4) LMS performs better than Least Square and 

Minimum Mean Square Error techniques. 

In Fig(5) CoSaMP algorithm works better compared 

with OMP and SP compressed sensing algorithms. 

In Fig(6) SP is combined with LS and MMSE. SP-

MMSE gives better performance with low error rate. 

In Fig(7) CoSaMP combined with LS and MMSE 

resulting CoSaMP-MMSE giving better performance. 

In Fig(8) LMS is combined with OMP, SP, CoSaMP 

algorithms and CoSaMP-LMS gives good results. 

Since estimation in LMS channel involves adaptively 

altering coefficients until there is no error between the 

combined output and received signal. LMS- CoSaMP 

will give less error rate compared to LS and MMSE so 

this combination works better.  

 

Fig 9. Performance analysis of LS estimation on 

OFDM 

 

While LS channel estimation is useful as a starting 

point, it may not perform as well in highly degraded or 

noisy channels. 

However, channel estimate is only one of several 

factors that affect BER in a communication system. 

Modulation technique, coding scheme, signal-to-noise 

ratio (SNR), interference, and system architecture are 

all additional considerations. Correct channel estimate 

can lessen the effect of channel fluctuations and boost 

system performance, leading to a lower bit error rate 

(BER). Fig(9) provides a BER comparison of all three 

channel estimation techniques LS, MMSE, LMS. LMS 

detects the best errors and hence has less error rate. 

The following tabular column represents all 

combinations involved and is compared for SNR 

values at 10db and 20db  CoSaMP-LMS is found to be 

the best of them all. 
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Fig.10 Tabulated results comparison of combinations 

Conclusion and Future Scope 

In conclusion, OFDM-MIMO (Orthogonal Frequency 

Division Multiplexing - Multiple-Input Multiple-

Output) systems can benefit from channel estimation 

strategies that make use of adaptive filters and 

compressive sensing. Reliable communication is 

maintained thanks to adaptive filters' ability to monitor 

and estimate dynamic channel conditions. By taking 

use of the channel's sparsity, estimation accuracy is 

enhanced and overhead is minimised with the help of 

compressive sensing-based techniques. With the help 

of compressive sensing, we can make better use of the 

available resources without needing as many pilot 

symbols or training sequences. It is possible to mix 

and match adaptive filtering and compressive sensing-

based approaches to optimise system performance. 

However, the costs and benefits of these methods must 

be weighed carefully. However, compressive sensing-

based approaches rely on assumptions of channel 

sparsity and may be constrained by particular channel 

circumstances, while adaptive filters may add 

computational complexity. The trade-off between 

estimate accuracy and complexity, system needs, 

computational resources, and channel characteristics 

all play a role in deciding between adaptive filters and 

compressive sensing-based approaches for channel 

estimation in OFDM-MIMO systems. In order to 

choose the best method for a specific task, it is 

important to do thorough evaluations and 

optimisations based on actual system scenarios. 
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