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ABSTRACT 

Knowledge of the mechanical properties of structural materials is essential for their practical applications. In the 

present work, three-hundred and sixty data samples on four mechanical properties of steels—fatigue strength, tensile 

strength, fracture strength and hardness—were selected from the Japan National Institute of Material Science 

database, comprising data on carbon steels and low-alloy steels. Five machine learning algorithms were used to 

predict the mechanical properties of the materials represented by the three-hundred and sixty data samples, and 

random forest regression showed the best predictive performance. Feature selection conducted by random forest and 

symbolic regressions revealed the four most important features that most influence the mechanical properties of 

steels: the tempering temperature of steel, and the alloying elements of carbon, chromium and molybdenum. 

Mathematical expressions were generated via symbolic regression, and the expressions explicitly predicted how 

each of the four mechanical properties varied quantitatively with the four most important features. This study 

demonstrates the great potential of symbolic regression in the discovery of novel advanced materials. 

 

INTRODUCTION  

The identification of structure-property relationships 

is fundamental to the discovery of new materials. 

However, the ability to comprehensively understand 

and manipulate structure-property relationships of 

materials is very challenging, due to the diversity and 

complexity of materials. As a result, data-driven 

discovery of novel advanced materials requires the 

use of advanced techniques such as big data and 

artificial intelligence, data mining and machine 

learning (ML) to accelerate research and 

development [1–8]. Materials 2 data and ML provide 

the foundation of this data-driven materials discovery 

paradigm, which integrates materials domain 

knowledge and artificial intelligence technology to 

form the new research field of materials informatics. 

In this new field, the Materials Genome Initiative 

aims to halve the cost and time from discovery to 

development to deployment of advanced materials 

[9]. This integrated approach applies materials data to 

explore structure-property relationships and to 

develop models and guidance for synthesis of new 

materials. For example, Homer et al. [10] and Zhu et 

al. [11] used ML tools to investigate grain boundaries 

in polycrystalline materials, and Raccuglia et al. [12] 

demonstrated a ML strategy to elucidate how to 

classify successful and failed synthesis conditions 

with the use of historically accumulated experimental 

data. Agrawal et al. [13,14] used ML algorithms to 

predict the fatigue strength of steels, which 

substantially improved the understanding of fatigue 

behavior. However, their ML predictions did not 

result in explicit mathematic expressions linking 

features and output properties, which are desirable 

for materials research, design, development and 

deployment. The purpose of this study was to predict 

the four mechanical properties of steels using five 

ML algorithms, especially using random forest (RF) 

regression and symbolic regression (SR). The 

performances of the five algorithms were assessed, 

revealing that RF performing the best, and explicit 

mathematical expressions were obtained from SR. 
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The production of HSS is different from that of other 

steel types in two main aspects, the steel chemical 

composition and the heat treatment process that are 

adopted to achieve their higher strengths. There are 

four main processing routes for the production of 

high strength steel plates, namely: Thermo-

Mechanical (TM) rolling, Thermo-Mechanical rolling 

with Accelerated Cooling (TM-ACC), Thermo-

Mechanical rolling with Direct Quenching (TM-DQ) 

and Conventional route for QT plates . The different 

chemical composition and heat treatment processes 

employed in the production of HSS by these routes 

lead to material stress–strain behaviours that are 

different from those of conventional mild steels at 

both room and elevated temperatures. At room 

temperature, the ductility and the ratio of the 

ultimate-to-yield strength of HSS reduce with 

increasing strength. At elevated temperatures, high 

strength steels, like all steels, lose strength and 

stiffness with increasing temperatures, but the rate of 

degradation is influenced by the chemical 

composition and the heat treatment process. 

The microstructure of mild steel can be 

either pearlite, bainite, or combination of both 

depending on the rate of cooling of austenite steel . 

Bainite and pearlite transformations are stable phases, 

and do not transform to other phases without 

reheating to form austenite (at about 900 °C). On the 

other hand, the microstructure of HSS is martensite 

which forms when the austenite is rapidly cooled, or 

quenched, to a relatively low temperature in order to 

prevent carbon diffusion and hence the formation of 

pearlite or bainite. Martensite is not an equilibrium 

phase because the quenching process prevents 

diffusion of carbon out of the austenite structure. It 

tends to transform to stable ferrite 

and cementite phases when it is heated to a 

temperature (higher than 250 °C) that initiates 

diffusion of trapped carbon in the lattice . The 

strength of HSS is controlled by the amount of 

developed cementite which is primarily a function of 

the chemical composition of the steel, the attained 

temperature and the duration of fire. Therefore, a 

combination of all of these factors, in particular the 

effect of chemical composition, need to be 

considered when predicting the elevated temperature 

mechanical properties of HSS materials. 

LITERATURE REVIEW: 
Steel contains important mechanical properties like 

tensile strength, yield strength and elongation. Oneof 

the basic traditional test conducted is uniaxial tensile 

test which is done for many reasons. In engineering 

applications, tests of tensile are used to select 

materials. To assure quality in the materials tensile 

properties are used. When making strides, modern 

materials estimation of ductile properties is included 

so that unmistakable materials can be related. In steel 

material, the protection across the load is a function 

of a cross section and mechanical properties. To 

figure out the mechanical properties of steel like 

tensile strength, yield strength, and elongation tensile 

test is performed.Yield Strength of a substance gives 

the stress when deformation exceeds the limit of 

plastic. Yield Strength is permanent when 

deformation is higher and results to stress. Yield 

Strength of a material is measured in Pascal.The 

results obtained are plotted on a curve called stress-

strain curve.To identify the points from this curve is 

bit difficult. The Yield Strength of the material is 

identified at the point where stress is deviated from 

original point of the curve. Tensile strength is the 

highest point plotted on the stress-strain curve after 

the test has been performed.If the temperature varies 

then the tensile strength of a material varies 

proportion to it. Elongation is the point to which a 

substance may be developed or shorten before it 

shatter.It plays an important role during the 

manufacturing process and measures the amount of 

bending and shaping a material without any breaks.In 

traditional process manpower and time required are 

more. So in this project the proposed method 

integrates with the machine learning algorithms 

which reduces manpower, time and improves the 

efficiency. 4. PROPOSED METHOD The proposed 

approach will remove lot of manpower and time and 

finds a better way for prediction of steel mechanical 

properties using the machine learning algorithms. 

Machine Learning algorithms are combined with the 

material sciences. Here algorithms like Random 

Forest, Decision Trees, Naive Bayes, and Logistic 

Regression are used. The dataset required for this 

research is collected from the standards resources. In 

this paper, different standards are taken into 

consideration along with the carbon content, sectional 

size and temperature. In Machine Learning 

algorithms supervised methods are used for 

prediction as it can be trained with both input and 

output values. This approach will give better results 

to predict tensile strength, yield strength and 

elongation of steel with different standards. 

Figure1:System Architecture for Prediction Data 

Collection: The ―Steel Prediction‖ dataset is collected 

from various sources and merged together with 

different parameters. It consists of seven attributes 

namely standards, carbon content, thickness, 

temperature, tensile strength, yield strength, 

https://www.sciencedirect.com/topics/engineering/heat-treatment-process
https://www.sciencedirect.com/topics/engineering/pearlite
https://www.sciencedirect.com/topics/engineering/bainite
https://www.sciencedirect.com/topics/engineering/austenite
https://www.sciencedirect.com/topics/engineering/pearlite-transformation
https://www.sciencedirect.com/topics/engineering/quenching-process
https://www.sciencedirect.com/topics/engineering/cementite
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elongation. In the above attributes four are 

independent variables (standards, carbon content, 

thickness, temperature) and three are dependent 

variables(tensile strength, yield strength, elongation). 

Data Preprocessing: The second stage after collection 

of data is the preprocessing of data. The missing 

values are handled using the nan function. After 

filling the missing values split the dataset into two 

categories training set and testing set.In training set 

the algorithm will be able to learn the behavior of the 

system and predicts the output using testing samples. 

It is the process of preparing data for analysis by 

removing data that is incorrect, incomplete, duplicate, 

and irrelevant and it also includes standardizing 

dataset by correcting mistakes such as empty fields, 

missing values using. After cleaning the dataset 

validate the accuracy. 

EXISTING SYSTEM: 

The mechanical properties of steels include various 

characteristics such as yield strength, tensile strength, 

hardness, fatigue resistance, and fracture toughness. 

These properties are essential for designing materials 

that can withstand different loads, temperatures, and 

environmental conditions.To apply machine learning 

to steel properties, researchers gather extensive 

datasets that include information about the 

composition of steel alloys, the manufacturing 

process, and the results of mechanical tests conducted 

on the materials. This data serves as the foundation 

for building predictive mode. Feature engineering 

involves selecting and transforming relevant data 

attributes (features) that will be used as input 

variables for the machine learning models. These 

features can include the chemical composition of the 

steel, heat treatment parameters, microstructure 

details, and more. Researchers use various machine 

learning algorithms, such as linear regression, 

decision trees, random forests, support vector 

machines, and neural networks, to develop predictive 

models. These models learn to map the input features 

to the desired mechanical properties. The models are 

trained on a portion of the dataset, and their 

performance is evaluated using validation techniques 

to ensure they can make accurate predictions. Cross-

validation and hold-out validation are common 

methods. Once trained and validated, the machine 

learning models can predict the mechanical 

properties of steel materials based on input data. This 

capability is valuable for material scientists, 

engineers, and industries that rely on steel for various 

applications. Beyond prediction, machine learning 

can assist in optimizing steel compositions and 

manufacturing processes to achieve desired 

mechanical properties. This is particularly valuable 

for developing advanced materials tailored to specific 

applications. Challenges in machine learning of steel 

properties include data quality, interpretability of 

models, and ethical considerations regarding the use 

of AI in material design and engineering. Ensuring 

model transparency and fairness . The application of 

machine learning in predicting steel properties has a 

profound impact on industries like automotive, 

aerospace, construction, and manufacturing. It 

accelerates materials research, reduces development 

costs, and enhances the performance and 

sustainability of steel-based products. 

In summary, "Machine Learning of Mechanical 

Properties of Steels" represents a cutting-edge 

approach to materials science and engineering. It 

leverages the power of AI and data-driven insights to 

improve our understanding of steel behavior, 

optimize material design, and drive innovation across 

a wide range of industries. 

PROPOSED SYSTEM: 

A. CHEMICAL COMPOSITION OF HOT 

ROLLED ALLOY STEEL: 

Most of the chemical composition of alloy steel 

consist of iron (Fe), carbon (C), manganese (Mn), 

silicon (Si), phosphorus (P) and sulfur (S). After 

reheating, roughing rolling, finishing rolling, laminar 

cooling and down coiler, a steel slab becomes a coil 

of a thin sheet. The mechanical properties can be 

adjusted with different chemical composition or 

process parameters. Complex interactions exist 

between the chemical composition and mechanical 

properties. For example, when the ratio of C in the 

steel is below 0.8Wt%, the YS and TS of the steel 

increase dramatically with the increases of C content, 

but the EL of steel decreases [24]. Furthermore, the 

content of S and P must be strictly controlled. S will 

reduce the hot workability and strength of steel and P 

will reduce the plasticity and toughness of the steel 

[25]. Mn has a strong ability of deoxidation and 

desulfurization, can greatly improve the hot 

workability and strength of steel. In steel production, 

molten iron is often mixed with oxygen (O2) and 

nitrogen (N2), which is detrimental to the mechanical 

properties of steel. For this reason, Mn, Si, aluminum 

(Al), vanadium (V), titanium (Ti) are often added as 

deoxidants to the steel [10]. The combination of Si, 

molybdenum (Mo), and chromium (Cr) not only 

makes the steel highly resistant to oxidation and 

corrosion but also enhances the strength and hardness 

of the steel. The addition of Al, niobium (Nb), and V 

to the steel can reduce the negative effects of N. The 

copper (Cu) in steel can improve the strength and 



ISSN2321-2152 

www.ijmece .com 

                                                                         Vol 11, Issue.4  Oct 2023 

 
toughness and resistance to atmospheric corrosion of 

steel. Boron(B) can improve the compactness and hot 

rolling properties of steel. Nickel (Ni) not only can 

significantly increase the strength and toughness of 

steel, Ni and Cr are also the main alloying elements 

of stainless steel [26]. 

B. HOT ROLLED PROCESSING OF ALLOY 

STEEL: 

 The hot rolled processing of steel slab can be divided 

into five steps, reheating, roughing rolling, finishing 

rolling, laminar cooling, and down coiling, Firstly, 

the steel slab is reheated in furnace to a high 

temperature about 1100◦ to 1250◦ . Secondly, the hot 

steel slab is transfer to edger mill and roughing mill 

to reduce the width and thickness. The steel slab 

would become longer and thinner. Thirdly, the steel 

slab will pass through the finishing mill to control the 

thickness with high precision. Fourthly, the steel strip 

will pass through the laminar cooling region to 

reduce the temperature quickly. Finally, the steel strip 

is coiled by the down coiler. In fact, a series of 

complex microstructure changes occur in the 

manufacturing processes, which could determine the 

mechanical properties of the alloy steel. First, the 

reheating process provides a uniform temperature to 

the slab to provide a uniform initial austenite grain 

size Then, the roughing and finishing processes refine 

austenite by dynamic and static recrystallization. 

Furthermore, the steel sheet is continuously cooled 

by the laminar cooling system for refining 

transformed ferrite and pearlite grain [27]. The size 

and volume fraction of these grains determine the 

mechanical properties of the steel. These heat 

treatment temperatures play an important role in 

mechanical properties prediction. Therefore, the 

furnace temperature (FT), the roughing rolling 

temperature (RRT), the finishing rolling temperature 

(FRT) and the coiling temperature (CT) have a 

significant influence on the mechanical properties of 

hot rolled steel. 

 

C. MECHANICAL PROPERTIES OF HOT 

ROLLED ALLOY STEEL : 

The mechanical properties of alloy steel are TS, YS, 

and EL. TS is defined as the maximum tensile stress 

that the steel can withstand before breaking, and the 

YS is defined as the maximum stress of the steel can 

withstand before plastic deformation begins. EL is 

defined as the percentage of stretched length to the 

original length after the steel is broken. Fig. 2 shows 

the relationship between TS, YS, and EL of alloy 

steel. III. PROPOSED APPROACH This section 

describes the proposed prediction method based on 

CNN for mechanical properties of hot rolled alloy 

steel. 

D. PROPOSED CNN METHOD FOR STEEL 

MECHANICAL PROPERTIES PREDICTION 
The proposed CNN-based prediction model is 

composed of two parts, feature extraction part and 

prediction part. As shown in Fig. 4, the feature 

extraction part is composed of an input layer and 

several feature extractors. The feature extractor is 

stacked by convolutional layer, batch normalization 

(BN) operation, nonlinear activation layer, and 

pooling layer. Each feature extractor will extract its 

input features to get a feature map which will become 

the input data of the subsequent feature extractor. The 

prediction part contains two fully connected (FC) 

layers and an output layer. The feature maps output 

by the last feature extractor will be transferred to the 

FC layers and perform the prediction task. Finally, 

the predicted steel mechanical properties value will 

be output by the output layer. The input layer receives 

the converted two-dimension data image, and the 

convolutional layer uses the convolution kernel 

which consists of a weight matrix with the same size 

as the receptive field on the input layer and a bias 

value to establish a local connection. As the receptive 

field slides from the top left of the input layer to the 

bottom right, the convolutional layer obtains the 

feature map of the input layer filtered by the 

convolution kernel, which can be expressed as 

Equation (3). yjk = ( X F p=1 X F q=1 

wpqx(p+j∗s)(q+k∗s) + b), 0 ≤ j ≤ H − F S , 0 ≤ k ≤ W 

− F S (3) yjk represents the value of the node 

positioned at (j, k) on the feature map, F represents 

the height and width of the receptive field, H and W 

represent the height and width of the input data, S 

indicates the stride of the receptive field. 

x(p+j∗s)(q+k∗s) represents the input data with the 

coordinate at (p + j ∗ s,q + k ∗ s), wpq and b denote 

the weight located at (p, q) on the weight matrix and 

the bias, respectively. To obtain sufficient 

characteristics of the mechanical properties, a set of 

convolutional kernels are used to perform the 

convolution operation. By the convolution operation, 

each convolution kernel can get a feature map, and 

different nodes on the feature map correspond to 

different receptive fields when the convolution kernel 

sweeps across the input layer. The connection pattern 

that each node on the same feature map connects to 

its receptive field by the same convolution kernel is 

called parameter sharing. The local connection and 

the parameter sharing are two important 

characteristics of CNN, which can reduce the number 

of parameters, extract the features in raw data 
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effectively, and enhance the generalization ability of 

the model [28]. For the lth convolutional layer with 

Pl convolutional kernels, the output can be denoted as 

Equation (4). u i l = XPl−1 k=1  Wi l x k l + b i l  , i ∈ 

[1, Pl] (4) x k l and u i l represent the input matrix 

and output matrix of the lth layer respectively, where 

i and k denote the channel index in the lth 

convolutional layer and the l-1th convolutional layer, 

respectively. The weight matrix and bias contained in 

the kth convolution kernel of the lth convolutional 

layer are denoted by Wi l and b i l respectively. The 

size of the feature map will shrink after convolution 

operation. The zeropadding method is applied to keep 

the size of the output feature map, which centers the 

output feature map and adds zero values at all the 

edges of the output feature map. BN operation is 

added after each convolutional layer to improve 

training speed and achieve higher prediction 

accuracy, which allows us to be less careful about the 

initialization method and use much higher learning 

rates [29]. First, each dimension of the input is 

normalized into a stable distribution with the mean of 

zero and variance of one. Then, the normalized value 

is scaled and shifted by a pair of learnable variables γ 

and β to restore the data distribution that should be 

learned in the previous layer. The BN operation can 

be expressed as Equation (5). y (k) = γ (k) x (k) − E x 

(k)  q Var x (k)  +  + β (k) , k ∈ [1,N] (5) VOLUME 

7, 2019 470 Z.-W. Xu et al.: Mechanical Properties 

Prediction for Hot Rolled Alloy Steel Using CNN 

where N represents the total dimension of the input, x 

(k) and y (k) represent the kth dimension of the input 

and output of the layer respectively, E(x (k) ) and Var 

x (k)  represent the mean value and variance of the 

kth dimension of the input respectively. A very small 

real number is added, to avoid the denominator is 

zero. The learnable variables for scaling and shifting 

the normalized value are represented by γ (k) and β 

(k) respectively. Rectified linear unit (ReLU) is 

applied to the proposed CNN model as the nonlinear 

activation function, which can prevent the vanishing 

gradient and exploding gradient problems in the 

neural network and enhance the training speed [30]. 

Let max denote the function to select the larger value 

between x and zero, the ReLU activation function can 

be indicated as Equation (6). ReLU(x) = max(x, 0) 

(6) In the pooling layer, downsampling is applied to 

scale down and concentrate feature map to obtain the 

most significant features in the input feature map. 

The max-pooling method is used as the pooling 

method by selecting the maximum value in the 

pooling field. The information of the concentrated 

feature maps obtained from the final pooling layer is 

transmitted to the prediction part by flattening the 

condensed feature maps into a dense vector. Each 

node on the first FC layer is connected to the dense 

vector and the output is passed to the second FC layer 

and finally transmitted to the output layer. The 

dropout [31] which can effectively avoid the 

proposed model from overfitting by randomly 

selecting some nodes to skip weight updates in each 

iteration of training is used at all the FC layers to 

enhance the generalization ability of the model. The 

predicted value is obtained by using feature 

extractions to gain the features from raw data and 

applying FC layers to process the feature 

information. The model output can be expressed as 

Equation (7). yˆ = wfc2σ(wfc1fl(pool(σ(bn( XPL−1 

k=1  Wi L x k L + b i L  )))) + bfc1) + bfc2 (7) where 

the weight and the bias of the first FC layer are 

denoted by wfc1 and bfc1 respectively, wfc2 and 

bfc2 are the weight and the bias of the second FC 

layer, σ represents the nonlinear activation function 

ReLU, fl denotes the flattening operation which 

flattens features into a dense vector, pool denotes the 

max-pooling method, bn denotes the BN operation, L 

represents the total number of convolutional layers, 

PL−1 denotes the number of convolutional kernels in 

the L-1th convolutional layer, the channel index of 

the Lth and L-1th convolutional layer are denoted by 

i and k respectively and x k L represents the input of 

the Lth layer. The mean squared error (MSE) is 

applied as the loss function to measure the distance 

between predicted values and actual values. 

Minimizing MSE is taken as the training goal of the 

proposed model and the minimum MSE is achieved 

by continuously adjusting the weight and bias of each 

neuron. The MSE can be expressed as Equation (8). 

MSE = 1 M XM i=1 yˆi − yi 2 (8) where yˆi 

represents the predicted value, yi represents the 

actual value, and M represents the sample size in the 

data sets.  

 

 

 

Results and Discussion  

 ML models with all features Four ML algorithms – 

RF, linear least-square (LLS), k-nearest neighbors 

(KNN) and architecture-neural network (ANN) – 

were conducted on the dataset comprising all 16 

features (termed ‗All‘). The performances of these 

algorithms were evaluated by ten-fold cross-

validation, in which the data were divided into ten 

parts (nine parts for training data and one part for 

testing data) and the training and testing were cycled 

ten times to allow the use of all data in testing. The 

predictive power of an ML algorithm on the testing 
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data was measured by the correlation coefficient (R) 

and the relative root-mean-square errors (RRMSE), 

which are defined by 5 ( )( )  ( )  ( )  = = = − − − 

− = n i n i i i n i i i y y y y y y y y R 1 1 2 2 1 ˆ ˆ ˆ ˆ , 

(1) ( ) y y y n RRMSE n i  i i = − = 1 2 ˆ 1 (2) 

Figure 1. The R and RRMSE values of the RF 

(random forest), LLS (linear least-square), KNN 

(knearest neighbors) and ANN (architecture-neural 

network) models using all 16 features: (a) fatigue 

strength of all models, and the performance of the 

best model, ANN@All; (b) tensile strength and the 

performance of the best model, ANN@All; (c) 

fracture strength and the performance of the best 

model, RF@All; and (d) hardness and the 

performance of the best model ANN@All. 6 where n 

is the number of testing data, and y, y ˆ and y denote 

the actual value, the predicted value and the average 

value, respectively. R lies between 0 and 1, and a 

value of 1 indicates a perfect prediction. An RRMSE 

value of zero indicates a perfect fit. In general, a 

higher value for R and a lower value for RRMSE 

indicate a better ML algorithm [16]. Figure 1 shows 

the R and RRMSE values of the four ML algorithms 

and compares the best predicted values from one of 

the ML algorithms with the measured values for each 

of the four mechanical properties. As can be seen, the 

RF has the greatest predictive power for fracture 

strength (R = 0.9725, RRMSE = 23.56%), whilst the 

ANN algorithm gives the best results for fatigue 

strength (R = 0.9699, RRMSE = 24.49%), tensile 

strength (R = 0.9857, RRMSE = 16.89%) and 

hardness (R = 0.9836, RRMSE = 18.13%).  

Feature selection  

Feature selection is crucial in ML; given the fact that 

ML algorithms such as RF and SR have feature 

selection functions, these algorithms are emphasized 

here. The importance of the features computed by RF 

is denoted RFI, and that of the features computed by 

SR is called SRI. Figures 2 (a-b) show the RFI and 

SRI values, respectively, for each original feature. 

The RFI values indicate that the four most important 

features are the presence of Mo and Cr, the 

normalizing temperature and the tempering 

temperature, whilst the SRI values indicate that the 

four most important features are the tempering 

temperature, and the presence of C, Cr and Mo, 

which correspondingly yield two feature subsets of 

RFI (NT, TT, Cr, Mo) and SRI (TT, C, Cr, Mo). 

Figure 2. Normalized (a) random forest importance 

(RFI) and (b) symbolic regression importance (SRI) 

of the 16 features for fatigue strength, tensile 

strength, fracture strength, and hardness. 7 The four 

ML algorithms were conducted using the RFI 

features (NT, TT, Cr, Mo) and the SRI features (TT, 

C, Cr, Mo). Figure 3 shows the cross-validation R 

values and the predicted values of the best model 

against the measured value for each of the four 

features. The results illustrate that the RF algorithm 

with the feature subset SRI (TT, C, Cr, Mo) 

outperforms the other algorithms. The RF models 

with the feature subset SRI (TT, C, Cr, Mo) predict 

the four target properties with high predictive 

accuracy (R > 0.9550, RRMSE < 30.00%). Figure 3. 

R values of the RF (random forest), LLS (linear least-

square), KNN (k-nearest neighbors) and ANN 

(architecture-neural network) models with the 

selected RFI and SRI feature subsets: (a) 8 for fatigue 

strength, and the performance of the best model, 

RF@SRI; (b) for tensile strength, and the 

performance of the best model, RF@SRI; (c) for 

fracture strength and the performance of the best 

model, RF@SRI; and (d) for hardness, and the 

performance of the best model RF@SRI.  

Mathematical expressions  

With SRI features (TT, C, Cr, Mo), SR gave the 

following mathematical expressions for fatigue 

strength (FaS) (MPa), tensile strength (TS) (MPa), 

fracture strength (FrS) (MPa), and hardness (H) 

(HV). FaS= -0.8685TT+316.7C+367.6Cr- 227.5Cr 

+708.6Mo +785.0 2 2 (3) TS= -1.827TT-119.7 

C+643.2Cr-379.9Cr +1514Mo +2122 2 2 (4) FrS= -

1.176TT- 46.12 C+695.4Cr- 415.3Cr +1461Mo 

+2267 2 2 (5) H = -0.5839TT-38.41 C+191.2Cr-

113.3Cr +104.0Mo+681.9 2 (6) where all elements 

are expressed in wt.% and TT is expressed in (°C). 

The equations had strong predictive power (R > 

0.9425, RRMSE < 33.30%), as shown in Figure 4. 

Equations (3-6) each include a minus sign with the 

tempering temperature, which indicates that lower 

tempering temperatures are should improve the 

strength and hardness of steels. The alloying elements 

of C, Cr and Mo are also strengthening elements. 

CONCLUSION  

The research here ensures that Machine Learning 

techniques will benefit in terms of accuracy and 

firmness for predicting the mechanical properties of 

steel metal. The dataset here is implemented with 

different machine learning algorithms like Random 

Forest, Decision Tree, Naive Bayes and Logistic 

Regression to achieve the good performance. Here 

70% of the data is used for training and 30% data is 

used for testing.The results obtained are validated 

with the test data to ensure the results obtained are 

correct. The implemented algorithms gave better 

results for predicting tensile strength, yield strength 

and elongation of steel. The accuracy obtained here is 

more than 90% for different machine learning 
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algorithms. The work presented here can be future 

enhanced for different metals with their input 

processing parameters and can predict the mechanical 

properties of other metals. It plays an important role 

in many of the applications which removes lot of 

manpower and time. 
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